关于合并区间的解法

56. 合并区间

已解答

中等

相关标签

相关企业

以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。

示例 1:

输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

示例 2:

输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。

提示:

  • 1 <= intervals.length <= 104
  • intervals[i].length == 2
  • 0 <= starti <= endi <= 104
class Solution {
public:
    static bool cmp(const vector<int>& a,const vector<int>& b){
         return a[0]<b[0];
     }
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
       sort(intervals.begin(),intervals.end(),cmp);
       vector<vector<int>> result;
       int left = intervals[0][0];
       int right = intervals[0][1];
       for(int i  = 1 ;i<intervals.size();i++){
          if(intervals[i][0]<=right){
             right = max(right,intervals[i][1]);
          }else if(intervals[i][0]> right){
             result.push_back({left,right});//放在上一个if中就错了,因为只用插入一次就行了
            left = intervals[i][0];
            right = intervals[i][1];
          }
       }
       result.push_back({left,right});//最后一组只是记录了,还未插入,所以需要补上。
       return result;
    }
};

    本题的思路与无重叠区间类似,但有几个比较细节的点:

        1.在收集结果时不能合并一个就收一个,而是尽可能多的合并后再收集,这也是为什么要把插入的操作放在else if里,因为当不重叠时,说明前面已经尽可能多的合并了(这里用的left,right来记录左右端点,最后收入)

       2.在进行不重叠区间时,需更新left,right。

       3.由于最后一组的区间只进行了更新,而没有插入,所以需要在最后补上插入最后一组的区间

       4.push_back没必要用insert替代,因为要选择插入位置,本题是直接插入末尾就行。

好的,我很乐意为您解释力扣56题"合并区间"的Python解法。 力扣56题"合并区间"是一个经典的区间问题。题目要求我们将一个包含多个重叠区间的列表合并成不重叠的区间列表。 以下是一个Python解法: ```python class Solution: def merge(self, intervals: List[List[int]]) -> List[List[int]]: # 首先按区间的起始位置排序 intervals.sort(key=lambda x: x[0]) merged = [] for interval in intervals: # 如果当前区间与结果列表中的最后一个区间不重叠,直接添加 if not merged or merged[-1][1] < interval[0]: merged.append(interval) else: # 否则,有重叠,更新结果列表中最后一个区间的结束位置 merged[-1][1] = max(merged[-1][1], interval[1]) return merged ``` 这个解法的主要步骤如下: 1. 首先,我们按每个区间的起始位置对输入的区间列表进行排序。 2. 然后,我们初始化一个空的合并结果列表。 3. 我们遍历排序后的区间列表: - 如果当前区间与结果列表中的最后一个区间不重叠,我们就直接将当前区间添加到结果列表中。 - 如果有重叠,我们就更新结果列表中最后一个区间的结束位置为当前区间和原最后一个区间结束位置的最大值。 4. 最后,我们返回合并后的结果列表。 这个算法的时间复杂度是O(n log n),其中n是区间的数量,主要是因为我们进行了排序操作。空间复杂度是O(n),用于存储结果。 这个解法的高效之处在于通过排序简化了重叠区间的判断过程,使得我们只需要比较结果列表中的最后一个区间和当前区间就可以决定如何处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值