前言
C基本的内置类型分为整形和浮点型,不同的类型创建变量所占用的内存大小不同,适用范围也不同,本篇主要以内存空间的视角,解读数据在内存中的存储方式。
一、整形的存储
1.原码,反码,补码
计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位用0表示“正”,用1表示“负”,而数值位则表示数值大小。
正整数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码
反码
将原码的符号位不变,其他位依次按位取反就可以得到反码
补码
反码+1就得到补码
Tips:上述过程也适用于将补码还原为原码
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值一律用补码表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
2.大小端模式
什么大端小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
为什么有大端和小端:
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的int型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 ,x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址(0x0010)中,0x22 放在高地址(0x0011)中.小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
输出什么?
char a= -1;//10000001->11111110->11111111
signed char b=-1;//11111111
unsigned char c=-1;//11111111
printf("a=%d,b=%d,c=%d",a,b,c);
a,b,c在打印时均会发生整形提升,a,b提升时补1,c提升时补0(c为无符号数)
a=-1,b=-1,c=255
char a = -128;//补码:10000000
printf("a=%u\n",a);
a整形提升补1,按无符号打印,是一个很大的数
a=4294967168
int i= -20; //11111111 11111111 11111111 11101100
unsigned int j = 10;//00000000 00000000 00000000 00001010
printf("i+j=%d\n", i+j);//11111111 11111111 11111111 11110110
结果转为原码:10000000 00000000 00000000 00001010 ->-10
unsigned int i;
for(i = 9; i >= 0; i--)
{
printf("%u\n",i);
}
i为无符号整形,0再减一后为一个很大的数,故死循环
二、浮点型在内存中的存储
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式
(-1)S * M * 2E
(-1)S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01*22 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01*22 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
IEEE 754对有效数字M和指数E,还有一些特别规定:
对于M:
在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。
以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字
至于指数E,情况就比较复杂:
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0-255;如果E为11位,它的取值范围为0-2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,210的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
加上中间数后内存中存储的E,又分为三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。比如:0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2-1,其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)
输出什么?
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
n=9在内存中为:
00000000 00000000 00000000 00001001(整形)
0 00000000 00000000000000000001001(看成浮点型)
E为全0,故以浮点型指针解引用时,n值为0.000000
n=9.0(1001.0)在内存中为:
0 10000010 00100000000000000000000(浮点型)
01000001 00010000 00000000 00000000(看成整形)
故以整形打印n时,n值为1091567616
总结
整形在内存中存储的形式为补码,
浮点型在内存中存储的形式根据国际标准IEEE(电气和电子工程协会) 754,
深入了解数据在内存中的存储方式对于“修炼内功”十分重要。