四点共面

1265 四点共面
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏  关注
给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面)。如果共面,输出"Yes",否则输出"No"。
Input
第1行:一个数T,表示输入的测试数量(1 <= T <= 1000)
第2 - 4T + 1行:每行4行表示一组数据,每行3个数,x, y, z, 表示该点的位置坐标(-1000 <= x, y, z <= 1000)。
Output
输出共T行,如果共面输出"Yes",否则输出"No"。
Input示例
1
1 2 0
2 3 0
4 0 0

0 0 0


刚接触线代 为了解决这道题 学了好多新知识 怪不得学长说搞算法到最后 你的数学不会差

不多说 以一个点为基点 造三个向量 转化为线性代数的3个向量线性相关的行列式为0。

这个你们可以百度 为啥零有关系 非零没关系 

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
struct wen{int x,y,z;}r[1003];
int main()
{
    int t;scanf("%d",&t);
    while(t--)
    {
        int i,j,x[1003],y[1003],z[1003];
        for(i=0;i<4;i++)
        scanf("%d%d%d",&x[i],&y[i],&z[i]);
        for(i=1;i<4;i++)
        {
            r[i].x=x[0]-x[i];r[i].y=y[0]-y[i];r[i].z=z[0]-z[i];
        }
        puts(r[1].x*r[2].y*r[3].z+r[1].y*r[2].z*r[3].x+r[2].x*r[3].y*r[1].z==                                  //付个上面测试数据经过运算后的3*3阵     -1 -1 0
             r[1].z*r[2].y*r[3].x+r[1].y*r[2].x*r[3].z+r[2].z*r[3].y*r[1].x?"Yes":"No");                                                                                             -3 2  0

                                                                                                                                                                                                                             1   2  0
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值