基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注
给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面)。如果共面,输出"Yes",否则输出"No"。
Input
第1行:一个数T,表示输入的测试数量(1 <= T <= 1000)
第2 - 4T + 1行:每行4行表示一组数据,每行3个数,x, y, z, 表示该点的位置坐标(-1000 <= x, y, z <= 1000)。
Output
输出共T行,如果共面输出"Yes",否则输出"No"。
Input示例
1
1 2 0
2 3 0
4 0 0
0 0 0
刚接触线代 为了解决这道题 学了好多新知识 怪不得学长说搞算法到最后 你的数学不会差
不多说 以一个点为基点 造三个向量 转化为线性代数的3个向量线性相关的行列式为0。
这个你们可以百度 为啥零有关系 非零没关系
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
struct wen{int x,y,z;}r[1003];
int main()
{
int t;scanf("%d",&t);
while(t--)
{
int i,j,x[1003],y[1003],z[1003];
for(i=0;i<4;i++)
scanf("%d%d%d",&x[i],&y[i],&z[i]);
for(i=1;i<4;i++)
{
r[i].x=x[0]-x[i];r[i].y=y[0]-y[i];r[i].z=z[0]-z[i];
}
puts(r[1].x*r[2].y*r[3].z+r[1].y*r[2].z*r[3].x+r[2].x*r[3].y*r[1].z== //付个上面测试数据经过运算后的3*3阵 -1 -1 0
r[1].z*r[2].y*r[3].x+r[1].y*r[2].x*r[3].z+r[2].z*r[3].y*r[1].x?"Yes":"No"); -3 2 0
1 2 0
}
}