记录安装使用Tensorflow-gpu 2.0的沙雕经历
最近项目要用deep learning搞一下,我就打算用tensorlfow了,在新机器上来回折腾,新机器配置是GTX2080Ti。下面开始了。
具体配置教程我是看的 https://zhuanlan.zhihu.com/p/71030147
为了追赶潮流,就安装了cuda10.2和cudnn-10.2,用anaconda安装了tensorflow-gpu 2.0,安装方式如下:
conda install tensorflow-gpu
你还别说,直接就能跑,但是问题来了,为啥每次运行的时候都报这玩意:
2019-12-14 21:57:59.401740: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
咦,咋都调用的cudart64_100.dll啊,明明我没装过cuda10.0呀,然后我就google,还真被我找到了,
就是说conda安装tensorflow-gpu会自己把相关依赖都安上,我估计是这玩意导致我每次跑代码都stuck一会才跑起来,没别说的,认怂,改cuda10.0。
其实我不想用tensorflow2.0的,因为github上搜到的代码都用的1.几的版本,但谁让咱追赶潮流呢,硬怼吧,遇到1.几的代码先
tf_upgrade_v2 --intree my_project/ --outtree my_project_v2/ --reportfile report.txt
然后再把类似contrib这被彻底废弃的换成可以替换的代码,比如说
from tensorflow.contrib.layers import variance_scaling_initializer
he_uniform = variance_scaling_initializer(factor=2.0, mode="FAN_IN", uniform=False)
换成
he_uniform = tf.initializers.VarianceScaling(scale=2.0, mode="fan_in", distribution="uniform")
咦,uniform应该是false啊,我代码里还改错了,…,回去改下代码,大概把distribution删了就行?反正有默认参数。
言归正传,还有data的问题,2.0里load data要改成:
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
这个要自己写怎么取batch。
写到这里,我cuda10.0也安完了,给你瞅瞅:

同时我又新开了个虚拟环境来测试
pip install tensorflow-gpu
这代码的确没安装cuda和cudnn,
然后就是激动人心的环节了:

没问题,摸鱼结束,撸代码去了。
(用conda安装好处就是依赖都安好了,pip安装都得一个个装啊,麻烦…
后记:
md,我发现我这堆骚操作并没有啥卵用,还是要stuck好久,哔了狗了。就当学习tensorflow了…
本文记录了在新机器上安装并使用TensorFlow-GPU2.0的过程,包括解决版本冲突、代码升级及数据加载等问题。作者分享了从conda安装到调整cuda版本,再到解决代码兼容性的详细步骤。
384

被折叠的 条评论
为什么被折叠?



