anaconda+tensorflow2.0(gpu版本)详细安装3

(关闭360等电脑管家)

步骤

1.Anconda安装

2.CUDA+cudnn安装

3.tensorflow2-gpu的安装(本文)

软件的链接我发到我的网盘了,自己根据需要进行提取

链接:https://pan.baidu.com/s/1KAysiU0SklQ1sPxzn_wUvQ 提取码:2gr0

现在进行最后一步,进行tensorflow2-gpu版本的安装,还有对anaconda的一下调整

进行tensorflow2-gpu的安装

首先打开anaconda prompt,然后输入conda list进行查看已经安装的packages,可以看到在安装anaconda时候是没有TF的
在这里插入图片描述
在这里插入图片描述

下面直接进行安装

有很多的博客都是建立一个虚拟环境在安装tensorlfow的,但是这种方法会让我们在使用anaconda时候,有些模块需要重新安装,很麻烦),所以我就直接在anaconda的base的环境下进行tensorlfow2.0-gpu的安装
1.首先打开命令终端窗口(cmd),输入下面的代码,对于镜像下载加快速度

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

2.打开我们的base环境
输入下面按enter即可,等待安装

pip install tensorflow-gpu==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述
显示成功安装的packages
在这里插入图片描述

查看tensorlfow2.0-gpu是否安装是否安装成功

1 输入conda list 查看tensorflow2-gpu包

在这里插入图片描述
在这里插入图片描述

2 用python环境进行查看

输入下面的代码进行查看

import tensorflow as tf
version = tf.version
gpu_ok = tf.test.is_gpu_available()
print(“tf version:”,version,"\nuse GPU",gpu_ok)
在这里插入图片描述
显示成功,tensorflow2.0-gpu版本我们现在正式完成安装

使用jupyter—notebook的设置

1. 对于文件存放目录的设置

请看这个的链接,写的很详细,改变文件的位置,同时对第四步进行一下补充
查找jupyter的方法,鼠标右键点击jupyter
在这里插入图片描述
然后进行修改就可以了

2.对于函数自动提示功能

在base的环境中执行下面的代码

第一步

pip install jupyter_contrib_nbextensions -i https://pypi.mirrors.ustc.edu.cn/simple
jupyter contrib nbextension install --user

第二步

pip install --user jupyter_nbextensions_configurator 
jupyter nbextensions_configurator enable --user

然后打开jupyter
在这里插入图片描述
这样就可以了
现在我们的tensorflow2——gpu版本彻底的完成了

步骤

1.Anconda安装

2.CUDA+cudnn安装

3.tensorflow2-gpu的安装(本文)

©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页