如何解决Pandas TypeError: Could not convert to numeric

一. 报错如下:

二. 问题原因:

如果在进行 groupby 操作后出现类似的 TypeError(例如:TypeError: Could not convert ace to numeric),那么你的 pandas 可能>=2.0。


groupby.mean()有一个 numeric_only=参数,它的默认值在过去是 "True",但从 pandas 2.0 开始,它的默认值是 "False"。这意味着在对 groupby 对象调用 mean 或 std 等统计方法时,字符串列不会被丢弃(过去是这样做的)。

三. 解决方案:

要解决该问题,请通过numeric_only=True.

显示问题和解决方案的示例。

import pandas as pd
df = pd.DataFrame({
    "Grouper": ["A", "B", "A", "B", "A"],
    "Name": ["a", "b", "c", "d", "e"],
    "Value": [0.95, 0.25, 0.25, 0.10, 1.00]
})

grouped = df.groupby("Grouper").mean()                    # <---- TypeError: Could not convert ace to numeric

grouped = df.groupby("Grouper").mean(numeric_only=True)   # <---- OK

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NJU_AI_NB

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值