【粉丝福利社】大模型智能推荐系统:技术解析与开发实践

🌟【技术大咖愚公搬代码:全栈专家的成长之路,你关注的宝藏博主在这里!】🌟

📣开发者圈持续输出高质量干货的"愚公精神"践行者——全网百万开发者都在追更的顶级技术博主!

👉 江湖人称"愚公搬代码",用七年如一日的精神深耕技术领域,以"挖山不止"的毅力为开发者们搬开知识道路上的重重阻碍!

💎【行业认证·权威头衔】
✔ 华为云天团核心成员:特约编辑/云享专家/开发者专家/产品云测专家
✔ 开发者社区全满贯:CSDN博客&商业化双料专家/阿里云签约作者/腾讯云内容共创官/掘金&亚马逊&51CTO顶级博主
✔ 技术生态共建先锋:横跨鸿蒙、云计算、AI等前沿领域的技术布道者

🏆【荣誉殿堂】
🎖 连续三年蝉联"华为云十佳博主"(2022-2024)
🎖 双冠加冕CSDN"年度博客之星TOP2"(2022&2023)
🎖 十余个技术社区年度杰出贡献奖得主

📚【知识宝库】
覆盖全栈技术矩阵:
◾ 编程语言:.NET/Java/Python/Go/Node…
◾ 移动生态:HarmonyOS/iOS/Android/小程序
◾ 前沿领域:物联网/网络安全/大数据/AI/元宇宙
◾ 游戏开发:Unity3D引擎深度解析
每日更新硬核教程+实战案例,助你打通技术任督二脉!

💌【特别邀请】
正在构建技术人脉圈的你:
👍 如果这篇推文让你收获满满,点击"在看"传递技术火炬
💬 在评论区留下你最想学习的技术方向
⭐ 点击"收藏"建立你的私人知识库
🔔 关注公众号获取独家技术内参
✨与其仰望大神,不如成为大神!关注"愚公搬代码",让坚持的力量带你穿越技术迷雾,见证从量变到质变的奇迹!✨ |


🚀前言

在信息爆炸的时代,如何高效地连接用户与海量信息已成为一项重要挑战。推荐系统作为人工智能的重要分支,通过深入挖掘用户行为和兴趣,推动了个性化信息分发的进步。然而,传统推荐系统在冷启动问题、长尾效应处理以及复杂语义理解等方面仍然面临诸多瓶颈。近年来,大语言模型(Large Language Model,LLM)的引入为这些难题的解决带来了全新的技术思路。

LLM凭借其强大的自然语言理解能力和上下文学习能力,正在彻底改变推荐系统的技术格局。从捕捉用户隐含需求,到生成语义丰富的嵌入表示,再到利用预训练知识完成复杂推荐任务,LLM展现了显著的性能优势。无论是精准用户画像、实时推荐响应,还是排序优化和生成式推荐,LLM都展现出了前所未有的能力。基于此,本书系统性地剖析了LLM与推荐系统的融合应用,涵盖技术原理、开发方法及实战案例,旨在为读者提供完整的知识体系和实用的开发指导。

🚀一、大模型智能推荐系统:技术解析与开发实践

本文送出的书籍是这本:

在这里插入图片描述

🔎1.编辑推荐

在人工智能飞速发展的今天,大语言模型凭借其强大的自然语言理解能力和上下文学习能力,正以前所未有的姿态改变着推荐系统的技术格局。而《大模型智能推荐系统:技术解析与开发实践》一书,无疑是引领开发者和研究人员深入探索这一前沿领域的明灯。

《大模型智能推荐系统:技术解析与开发实践》系统地剖析了大语言模型与推荐系统的融合应用,内容涵盖技术原理、开发方法及丰富的实战案例,旨在为读者构建一个完整的知识体系,并提供实用的开发指导。全书精心分为 4 部分,内容层层递进,如同一位耐心的导师,逐步引导读者从技术理解走向实战开发,助力读者成功构建高效、智能化的推荐系统。

第1部分聚焦于推荐系统的技术框架与大语言模型的结合点,深入剖析冷启动问题和长尾用户优化等核心挑战。同时,详细解读数据清洗、用户画像与特征工程的方法,为推荐系统的搭建奠定坚实基础。

第2部分则像一把钥匙,深入解锁 LLM 的核心技术,包括嵌入生成、生成式推荐和预训练模型应用等,帮助读者掌握构建智能推荐系统的关键能力,让读者真正理解大语言模型在推荐系统中的核心价值。

第3部分探讨推荐系统的进阶优化技术,如微调方法、上下文学习和Prompt工程等,并展示多任务学习与交互式推荐的实践方法,引领读者探索推荐系统的更高层次。

第4部分结合实战项目,完整展示推荐系统从开发到部署的全过程。以电商推荐系统为例,涵盖数据处理、模型开发与优化、系统上线及性能监控等关键环节,为读者提供宝贵的实践经验。

《大模型智能推荐系统:技术解析与开发实践》的一大特色是注重理论与实践的紧密结合,包含了丰富的代码示例和运行结果,确保读者能够将所学知识迅速付诸实践。同时,书中引用了诸多先进工具与框架,如 Hugging Face 的 Transformer 库、ONNX 优化工具和分布式推理框架等,为构建工业级推荐系统提供了坚实的技术基础。

无论你是初涉推荐系统领域的新手,还是经验丰富的专业人士,本书都将成为你的得力助手。它不仅能满足你对大语言模型推荐系统的求知欲,还能在实际项目中为你提供切实可行的解决方案。相信这《大模型智能推荐系统:技术解析与开发实践》将是你开启智能推荐新时代的钥匙,带你在技术的海洋中畅游,创造出更加智能、高效的推荐系统。

🔎2.内容简介

《大模型智能推荐系统:技术解析与开发实践》系统阐述大语言模型与推荐系统深度融合的创新实践,涵盖技术原理、开发方法及实战案例。《大模型智能推荐系统:技术解析与开发实践》分为4部分,共12章,涉及推荐系统的多个关键模块,包括技术框架、数据处理、特征工程、嵌入生成、排序优化及推荐结果评估。重点解析大语言模型在冷启动问题、长尾内容优化和个性化推荐等领域的核心技术,通过深度剖析上下文学习、Prompt工程及分布式部署等方法,展示如何利用大语言模型提高推荐精度和用户体验。同时,通过实战项目的解析,助力读者掌握高效智能推荐系统从开发到部署的全流程。《大模型智能推荐系统:技术解析与开发实践》还引用了Hugging Face的Transformer库、ONNX优化工具以及分布式推理框架等先进技术,为构建工业级推荐系统筑牢坚实基础。

《大模型智能推荐系统:技术解析与开发实践》注重理论与实践的结合,尤其适合希望将推荐技术应用于业务场景的开发者与研究人员阅读。

🔎3.作者简介

梁志远,博士,毕业于北京航空航天大学。长期从事人工智能、大语言模型的开发,专注于深度学习、自然语言处理、数据分析与智能决策等领域。主持或参与多项科研项目,涵盖模型训练优化、知识蒸馏、自动推理与多模态学习等方向。致力于推动人工智能技术在工业应用、智能交互与数据驱动中的实践与发展。

韩晓晨,博士,长期从事高性能计算与大模型训练算力优化研究。近十年来,专注于智能计算架构优化及大规模数据处理,深耕控制算法、机器视觉等领域。近年来,重点研究大模型训练加速、算力调度与异构计算优化,致力于提升计算效率与资源利用率,推动大规模人工智能模型的高效部署与应用。

🔎4.产品特色

在这里插入图片描述

🔎5.目录

目 录

第1部分 理论基础与技术框架

第1章 大语言模型推荐系统的技术框架 3

1.1 基本技术详解 3

1.1.1 Transformer架构基础 3

1.1.2 注意力机制 8

1.1.3 大规模向量检索技术 13

1.1.4 Prompt工程与上下文学习技术 17

1.1.5 计算性能优化与并行训练技术 21

1.2 大语言模型推荐系统的核心模块 24

1.2.1 嵌入生成与用户画像建模 25

1.2.2 嵌入生成模块 29

1.2.3 召回模块 32

1.2.4 排序模块 35

1.2.5 实时推荐与上下文处理模块 38

1.3 推荐系统的关键挑战与解决技术 41

1.3.1 数据稀疏性问题 41

1.3.2 高并发环境详解 45

1.4 本章小结 50

1.5 思考题 512章 数据处理与特征工程 52

2.1 数据清洗与标准化 52

2.1.1 异构数据格式标准化处理 52

2.1.2 数据噪声过滤与异常检测 56

2.2 用户画像与物品画像的构建 60

2.2.1 用户兴趣特征生成 61

2.2.2 基于嵌入向量的物品特征提取 65

2.3 特征交互与场景特征生成 69

2.3.1 特征交叉组合实现 69

2.3.2 领域知识的上下文特征增强 73

2.4 本章小结 77

2.5 思考题 772部分 核心技术解析

第3章 嵌入技术在推荐系统中的应用 81

3.1 用户行为嵌入生成技术 81

3.1.1 基于大语言模型的用户行为编码 81

3.1.2 时间序列特征的嵌入优化 84

3.2 多模态数据嵌入技术 88

3.2.1 文本、图像与视频嵌入的融合方法 88

3.2.2 基于CLIP模型的多模态特征联合嵌入 92

3.3 嵌入向量的存储与检索优化 95

3.3.1 使用Faiss进行高效向量检索 95

3.3.2 向量检索优化 98

3.3.3 文本嵌入向量生成 100

3.4 自监督嵌入学习方法 103

3.4.1 自监督学习基本原理 103

3.4.2 基于对比学习的嵌入生成 106

3.5 本章小结 110

3.6 思考题 1114章 生成式推荐:从特征到内容 112

4.1 大语言模型生成特征的技术方法 112

4.1.1 GPT生成用户兴趣特征与物品特征 112

4.1.2 T5模型与文本生成 115

4.2 大语言模型生成推荐内容 118

4.2.1 个性化商品描述与广告文案生成 118

4.2.2 基于用户历史行为生成推荐 121

4.3 生成式推荐系统的优化与评估 127

4.3.1 推荐生成结果过滤 127

4.3.2 评估:生成内容与用户点击率 130

4.4 生成约束与RLHF 133

4.4.1 生成约束在推荐任务中的实现 133

4.4.2 基于RLHF的生成质量优化技术 136

4.5 本章小结 140

4.6 思考题 1405章 预训练语言模型在推荐系统中的应用 142

5.1 预训练语言模型的架构设计 142

5.1.1 使用PLM进行用户与物品的联合建模 142

5.1.2 Transformer架构对推荐效果的提升 146

5.2 预训练语言模型在冷启动推荐中的应用 149

5.2.1 用户冷启动与物品冷启动的特征生成 149

5.2.2 基于上下文学习的冷启动推荐 153

5.2.3 利用生成模型创建冷启动数据 160

5.3 代码实战:基于MIND数据集构建预训练推荐系统 163

5.3.1 数据集加载与预处理 163

5.3.2 用户与物品特征的嵌入生成 166

5.3.3 预训练模型的构建与优化 169

5.3.4 推荐结果的推理与评估 172

5.3.5 模型改进与迭代开发 175

5.4 本章小结 181

5.5 思考题 1823部分 模型优化与进阶技术

第6章 微调技术与个性化推荐 185

6.1 微调推荐模型的关键技术 185

6.1.1 PEFT 185

6.1.2 RLHF 191

6.2 个性化推荐系统的实现 196

6.2.1 针对长尾用户的微调策略 196

6.2.2 微调后推荐系统的效果提升 201

6.3 案例分析:TALLRec框架在个性化推荐中的应用 206

6.3.1 微调模型的训练与部署 206

6.3.2 基于用户行为的个性化推荐实现 210

6.3.3 TALLRec的多任务学习在推荐中的应用 214

6.4 参数高效微调(LoRA)的实现与应用 219

6.4.1 LoRA技术的具体实现与代码分析 219

6.4.2 LoRA优化推荐系统的实际案例 222

6.5 本章小结 227

6.6 思考题 2287章 上下文学习与直接推荐技术 229

7.1 大语言模型上下文学习的技术实现 229

7.1.1 提示词工程 229

7.1.2 动态上下文学习与实时推荐 231

7.2 Prompt优化与自适应推荐系统 234

7.2.1 连续Prompt生成 234

7.2.2 用户意图检测与自适应推荐算法 236

7.3 基于Few-shot和Zero-shot的推荐任务 239

7.3.1 Few-shot推荐任务的案例与技术解析 239

7.3.2 Zero-shot推荐任务案例分析 242

7.4 本章小结 248

7.5 思考题 2488章 多任务学习与交互式推荐系统 250

8.1 多任务学习模型的架构设计 250

8.1.1 多任务学习模型在推荐中的应用 250

8.1.2 多任务优化 253

8.2 交互式推荐系统的智能体架构 257

8.2.1 交互式推荐中的Agent系统简单实现 257

8.2.2 用户实时反馈对推荐模型的动态更新 259

8.3 实战案例:基于LangChain实现对话式推荐 262

8.3.1 用户对话驱动的推荐生成 262

8.3.2 多轮对话中的上下文管理问题 264

8.3.3 对话与推荐融合 266

8.3.4 云端部署LangChain系统 268

8.4 本章小结 271

8.5 思考题 2724部分 实战与部署

第 9 章 排序算法与推荐结果优化 275

9.1 排序算法的核心技术 275

9.1.1 Transformer生成排序特征的方法 275

9.1.2 CTR预测模型 277

9.2 排序优化的代码实现 280

9.2.1 Wide&Deep模型排序案例 281

9.2.2 使用GBDT进行特征排序与评分 284

9.3 基于Learning-to-Rank的排序优化 287

9.3.1 Pointwise、Pairwise和Listwise方法解析 288

9.3.2 使用Learning-to-Rank优化推荐系统排序的案例 290

9.4 本章小结 295

9.5 思考题 29610章 冷启动问题与长尾问题详解 298

10.1 冷启动问题的技术解决方案 298

10.1.1 利用大语言模型生成初始用户行为样本 298

10.1.2 新品与冷门内容的长尾推荐 301

10.2 长尾用户的动态兴趣建模 303

10.2.1 兴趣迁移 303

10.2.2 基于行为序列的动态特征生成 305

10.3 冷启动推荐的案例分析 307

10.3.1 冷启动推荐系统的代码实现 307

10.3.2 基于大语言模型的物品冷启动解决方案 309

10.3.3 长尾内容的推荐优化 311

10.3.4 案例实战:公众号冷启动推荐 313

10.4 本章小结 315

10.5 思考题 31611章 推荐系统开发基础 317

11.1 推荐系统的分布式架构设计 317

11.1.1 微服务框架下的推荐模块部署 317

11.1.2 ONNX模型转换与TensorRT推理加速 319

11.1.3 分布式向量检索服务的负载均衡 322

11.1.4 高可用推荐服务容错与恢复机制 324

11.2 推荐服务的高并发优化 326

11.2.1 实时推荐服务的缓存机制设计 326

11.2.2 异步处理与批量推理的性能提升 329

11.2.3 动态负载均衡在推荐服务中的应用 331

11.2.4 使用分布式消息队列优化高并发推荐流 333

11.3 推荐系统的日志与监控模块 336

11.3.1 实时监控系统性能与用户行为数据 336

11.3.2 日志采集与分布式存储架构 338

11.3.3 异常检测与告警系统 341

11.3.4 推荐效果评估反馈 345

11.4 本章小结 348

11.5 思考题 34812章 基于大模型的电商平台推荐系统开发 350

12.1 项目规划与系统设计 350

12.1.1 基于大语言模型的推荐系统整体架构设计 350

12.1.2 需求分析与功能模块划分 353

12.2 数据管理模块 355

12.2.1 数据采集、清洗与规范化 355

12.2.2 用户与物品特征生成 357

12.3 嵌入生成与召回模块开发 361

12.3.1 基于大模型的嵌入生成 361

12.3.2 向量检索与召回 363

12.4 排序与优化模块 365

12.4.1 CTR生成式排序模型 365

12.4.2 使用LTR优化推荐效果 368

12.5 系统部署与实时服务 371

12.5.1 模型转换与ONNX优化 371

12.5.2 分布式推理服务与API接口开发 373

12.5.3 模型微调与部署 376

12.6 性能监控与日志分析 380

12.7 本章小结 383

12.8 思考题 384

需要完全了解本书可以看下面:

链接🔗:地址《大模型智能推荐系统:技术解析与开发实践》

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愚公搬代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值