假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
public class ClimbingStairs {
//递归算法,每一步都有两种走法,走一步或者走两步。但是效率不高,时间复杂度太高了递归
public int climbStairs(int n) {
if(n == 1 ){
return 1;
}
if (n == 2){
return 2;
}
return climbStairs(n-1) + climbStairs(n-2);
}
//动态规划算法,时间复杂度O(N),空间复杂度也是,就是多浪费点空间换时间
//动态规划和递归的区别,就是动态规划这里,已经存储有以前的结果,不需要重复计算,递归就经常重复计算浪费时间
public int climbStairs2(int n) {
if(n == 1 ){
return 1;
}
if (n == 2){
return 2;
}
int[] dp = new int[n+1];//我们多浪费一个,用n看着舒服点
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <=n; i++) {
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
}