爬楼梯Climbing Stairs -递归和动态规划算法的区别题

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶
public class ClimbingStairs {
    //递归算法,每一步都有两种走法,走一步或者走两步。但是效率不高,时间复杂度太高了递归
    public int climbStairs(int n) {
        if(n == 1 ){
            return 1;
        }
        if (n == 2){
            return 2;
        }
        return climbStairs(n-1) + climbStairs(n-2);
    }
    //动态规划算法,时间复杂度O(N),空间复杂度也是,就是多浪费点空间换时间
    //动态规划和递归的区别,就是动态规划这里,已经存储有以前的结果,不需要重复计算,递归就经常重复计算浪费时间
    public int climbStairs2(int n) {
        if(n == 1 ){
            return 1;
        }
        if (n == 2){
            return 2;
        }
        int[] dp = new int[n+1];//我们多浪费一个,用n看着舒服点
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <=n; i++) {
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值