一个超几何函数类型的积分

\[\Large\displaystyle \int_{0}^{1}x\sqrt{1+x^{3}}\mathrm{d}x\]


\(\Large\mathbf{Solution:}\)
易知
\[\int_{0}^{1}x\sqrt{1+x^{3}}\mathrm{d}x=\frac{1}{3}\int_{0}^{1}x^{-\frac{1}{3}}\left ( 1+x \right )^{\frac{1}{2}}\mathrm{d}x\]
下面我们来看这个一般形式
\[\int_{0}^{u}y^{b -1}\left ( u-y \right )^{c-b-1}\left ( y+\frac{u}{x} \right )^{-a}\mathrm{d}t\]
首先我们引入Beta函数
\[\mathrm{B}\left ( a,b \right )=\int_{0}^{1}t^{a-1}\left ( 1-t \right )^{b-1}\mathrm{d}t\]
然后引入超几何函数 \(_{2}F_{1}\) 的定义
\[_{2}F_{1}\left ( a,b;c;x \right )=\frac{1}{\mathrm{B}\left ( b,c-b \right )}\int_{0}^{1}t^{b-1}\left ( 1-t \right )^{c-b-1}\left ( 1-tx \right )^{-a}\mathrm{d}t\]
简单调整之后我们可以得到
\[\int_{0}^{1}t^{b}\left ( 1-t \right )^{c}\left ( 1-tx \right )^{a}\mathrm{d}t=\mathrm{B}\left ( b+1,c+1 \right )\, _{2}F_{1}\left (-a,b+1;b+c+2;x \right )\]
做代换 \(y=tu~,~x\rightarrow -x\)后,我们有
\[\begin{align*} &\int_{0}^{1}t^{b}\left ( 1-t \right )^{c}\left ( 1-tx \right )^{a}\mathrm{d}t=\int_{0}^{1}\left ( \frac{y}{u} \right )^{b}\left ( 1-\frac{y}{u} \right )^{c}\left ( 1+\frac{yx}{u} \right )^{a}\frac{1}{u}\mathrm{d}y\\ &=\left ( \frac{u}{x} \right )^{-a}u^{-b-c-1}\int_{0}^{u}y^{b}\left ( u-y \right )^{c}\left ( y+\frac{u}{x} \right )^{a}\mathrm{d}y \end{align*}\]
然后做代换 \(b+1\rightarrow b~,~c+1\rightarrow c-b~,~a\rightarrow -a\) 我们有
\[\int_{0}^{u}y^{b -1}\left ( u-y \right )^{c-b-1}\left ( y+\frac{u}{x} \right )^{-a}\mathrm{d}t=\left ( \frac{u}{x} \right )^{a}u^{c-1}\mathrm{B}\left ( b,c-b \right )\, _{2}F_{1}\left ( a,b;c;-x \right )\]
所以我们令 \(u=1~,~x=1~,~b=\dfrac{2}{3}~,~c=\dfrac{5}{3}~,~a=-\dfrac{1}{2}\),可以得到
\[\int_{0}^{1}x^{-\frac{1}{3}}\left ( 1+x \right )^{\frac{1}{2}}\mathrm{d}x=\frac{3}{2}\, _{2}F_{1}\left ( -\frac{1}{2},\frac{2}{3};\frac{5}{3};-1 \right )\]
所以
\[\Large\boxed{\displaystyle \int_{0}^{1}x\sqrt{1+x^{3}}\mathrm{d}x=\color{blue}{\frac{1}{2}\, _{2}F_{1}\left ( -\frac{1}{2},\frac{2}{3};\frac{5}{3};-1 \right )}}\]

转载于:https://www.cnblogs.com/Renascence-5/p/5479354.html

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值