1 问题提出
本文主要介绍Gauss超几何函数 在特殊函数中具有重要地位,因为许多其他类型的特殊函数都是它的特殊情形,所有具有三个正则奇点的二阶线性常微分方程的解都可以用超几何函数表示。
对于给定复数 和, Gauss 超几何函数 是由下式定义的函数 在裂纹复平面上的解析开拓:
其中当 时,;当 时
而其中的
为经典的 函数,当 时,称 是零平衡的. 所以得到超几何方程 的一个特解,它有三个正则奇点: .便是由上面(1)与(2)式整理所得另一个特解为
在这里八一指出勒让德方程其实是超几何方程的一个特例,首先我们要对超几何方程进行变量代换,令,代入到超几何方程中整理可得
其中勒让德方程的表达式为
通过我们比较上式的超几何方程,得到
因此我们得到勒让德函数与超几何函数之间的关系
此时当 时, 超几何函数发散;当 或 时,超几何函数退化为勒让德多项式。
2相关性质
对开始定义中的超几何函数 有如下的求导公式
一般地,超几何函数 有 阶导数公式
并得到如下递归关系
众所周知,Gauss 超几何函数的性质与函数,函数以及函数之间的关系密切相关.
3 与其他函数关系
- 函数
- 椭圆积分
- 切比雪夫函数
- 贝塞尔函数
Gauss 超几何函数的两个重要的特例就是第一类完全椭圆积分和和第二类完全椭圆积分。
完全椭圆积分在不少数学领域和物理学等学科中有着重要的应用.
当参数 和取某些特定值时,超几何函数可表示一些初等函数和特殊函数。例如,
合流超几何函数(Kummer函数)可以用超几何函数的极限表示:
4积分形式
超几何函数的积分表达式有两种:一种是从超几何方程的积分解得到的,另一种称为巴恩斯(Barnes)积分表示则是从级数表示导出的。
「第1种:由超几何方程的积分分解」
「第2种:巴恩斯(Barnes)积分表示」
其中.
5.广义超几何函数
广义超几何函数(),有时也称超几何函数,是一个用幂级数定义的函数,其中幂级数的系数由若干个升阶乘的积和商给出。下文中用“超几何函数”一词代指广义超几何函数,而用“Gauss超几何函数”是指 时的广义超几何函数。
一般用下列表达式来记广义超几何函数:
几个特例:,,,与高斯超几何函数:
指数函数
习题练习
「例1.」 试证:
「证明.」 由于
即可得
「例2.」 试证:
「证明.」 要计算 ,则对, 恒有
此时 , 但注意到 . 因此
「例3.」 试证:
「证明.」 考虑
对, 恒有
由于 ,,即有
「例4.」 试证下列恒等式
「证明.」 利用
因此 即证.「例5.」 若 , ,则对有 .
「证明.」 由于 ,即
因此
所以对有 .
「例6.」 试证:
「证明.」 考虑
则有「例7.」 试证:
「证明.」 利用,我们得到
接下来
再利用 可得
这样我们就得到
因此
即
「例8.」 第一类的完全椭圆积分为
试证:
「证明.」 根据 可得
又有因此
「例9.」 第二类的完全椭圆积分为
试证:
「证明.」 根据
可得因此