一个双曲函数的积分

\[\Large\displaystyle \int^{\infty}_{0}\frac{\tanh\left(\, x\,\right)} {x\left[\, 1 - 2\cosh\left(\, 2x\,\right)\,\right]^{2}}\,{\rm d}x\]


\(\Large\mathbf{Solution:}\)
A possible way I see of doing this is to apply the substitution \(x\mapsto-\ln{x}\), which yields
\[-\int^{1}_{0}\frac{x^{3}\left(\, 1 - x^{2}\,\right)} {\left(\, 1 + x^{2}\,\right)\left(\, 1 - x^{2} + x^{4}\,\right)^{2}}\, \frac{{\rm d}x}{\ln\left(\, x\,\right)}\]
So
\[\begin{align*} \mathcal{I} &=-\int_{0}^{1}\frac{x^3(1-x^2)}{(1+x^2)(1-x^2+x^4)^2}\frac{\mathrm{d}x}{\ln{x}}\\&=-\int_{0}^{1}\frac{x^3(1-x^2)}{(1+x^6)(1-x^2+x^4)}\frac{\mathrm{d}x}{\ln{x}}\\ &=-\int_{0}^{1}\frac{x^3(1-x^4)}{(1+x^6)^2}\frac{\mathrm{d}x}{\ln{x}}\\&=-\int_{0}^{1}\frac{z(1-z^{4/3})}{(1+z^2)^2}\frac{\mathrm{d}z}{3z^{2/3}\ln{\left(z^{1/3}\right)}}\\&=\int_{0}^{1}\,\frac{1}{(1+z^2)^2}\frac{z^{5/3}-z^{1/3}}{\ln{z}}\mathrm{d}z\\ &=\int_{0}^{1}\,\frac{\mathrm{d}z}{(1+z^2)^2}\int_{1/3}^{5/3}\,z^{\mu}\mathrm{d}\mu\\&=\int_{1/3}^{5/3}\mathrm{d}\mu\int_{0}^{1}\,\frac{z^{\mu}}{(1+z^2)^2}\mathrm{d}z\\&=\int_{1/3}^{5/3}\left[-\frac14+\frac{\mu-1}{4}\beta{\left(\frac{\mu-1}{2}\right)}\right]\mathrm{d}\mu\\ &=-\frac13+\int_{1/3}^{5/3}\left[\frac{\mu-1}{4}\beta{\left(\frac{\mu-1}{2}\right)}\right]\mathrm{d}\mu\\&=-\frac13+\int_{-1/3}^{1/3}\,t\beta{\left(t\right)}\mathrm{d}t\\ &=-\frac13+\int_{-1/3}^{1/3}\,\frac{t}{2}\left[\psi{\left(\frac{t+1}{2}\right)}-\psi{\left(\frac{t}{2}\right)}\right]\mathrm{d}t\\&=-\frac13+\int_{-1/3}^{1/3}\,\frac{t}{2}\psi{\left(\frac{t+1}{2}\right)}\mathrm{d}t-\int_{-1/3}^{1/3}\,\frac{t}{2}\psi{\left(\frac{t}{2}\right)}\mathrm{d}t\\ &=-\frac13+\int_{1/3}^{2/3}\,(2u-1)\psi{\left(u\right)}\mathrm{d}u-2\int_{-1/6}^{1/6}\,u\psi{\left(u\right)}\mathrm{d}u\\ &=-\frac13-\int_{1/3}^{2/3}\,\psi{\left(u\right)}\mathrm{d}u+2\int_{1/3}^{2/3}\,u\psi{\left(u\right)}\mathrm{d}u-2\int_{-1/6}^{1/6}\,u\psi{\left(u\right)}\mathrm{d}u\\ &=-\frac13+\ln{\left(\frac{\Gamma{\left(\dfrac13\right)}}{\Gamma{\left(\dfrac23\right)}}\right)}+2\int_{1/3}^{2/3}\,u\psi{\left(u\right)}\mathrm{d}u-2\int_{-1/6}^{1/6}\,u\psi{\left(u\right)}\mathrm{d}u\\ &=-\frac13+\ln{\left(\frac{\Gamma{\left(\dfrac13\right)}}{\Gamma{\left(\dfrac23\right)}}\right)}+2\int_{1/3}^{2/3}\,u\psi{\left(u\right)}\mathrm{d}u-2\int_{5/6}^{7/6}\,(1-v)\psi{\left(1-v\right)}\mathrm{d}v\\ &=-\frac13+\ln{\left(\frac{\Gamma{\left(\dfrac13\right)}}{\Gamma{\left(\dfrac23\right)}}\right)}+2\left[u\ln{\Gamma\left(u\right)}-\psi^{(-2)}{\left(u\right)}\right]_{1/3}^{2/3}\\ &~~~~~ +2\left[(1-v)\ln{\Gamma\left(1-v\right)}-\psi^{(-2)}{\left(1-v\right)}\right]_{5/6}^{7/6}\\ &=\ln{\left(\frac{\Gamma{\left(\dfrac13\right)}}{\Gamma{\left(\dfrac23\right)}}\right)}-\frac{5\pi}{9\sqrt{3}}-\frac{\ln{\left(2\pi\right)}}{3}+\frac23\ln{\left(\frac{\Gamma{\left(\dfrac23\right)}^2}{\Gamma{\left(\dfrac13\right)}}\right)}+\frac{5\psi^{(1)}{\left(\dfrac13\right)}}{6\sqrt{3}\,\pi}\\ &=\Large\boxed{\displaystyle\color{blue}{-\frac{5\pi}{9\sqrt{3}}-\frac{\ln{3}}{6}+\frac{5\psi^{(1)}{\left(\dfrac13\right)}}{6\sqrt{3}\,\pi}}} \end{align*}\]

转载于:https://www.cnblogs.com/Renascence-5/p/5496125.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在 Matlab 中求解带有积分双曲偏微分方程需要使用偏微分方程求解工具箱(Partial Differential Equation Toolbox)中的函数 `pdepe`。`pdepe` 函数可以求解以下形式的双曲偏微分方程: ``` c(x, t, u) ∂u/∂t = ∂/∂x (a(x, t, u) ∂u/∂x) + ∂/∂y (b(x, t, u) ∂u/∂y) + f(x, y, t, u) ``` 其中 `c(x, t, u)`、`a(x, t, u)`、`b(x, t, u)` 和 `f(x, y, t, u)` 均为函数,`u(x, y, t)` 为未知函数。 具体地,对于带有积分双曲偏微分方程,我们可以将其转化为一般形式的双曲偏微分方程,然后利用 `pdepe` 函数来求解。例如,对于如下方程: ``` ∂u/∂t + ∂/∂x (a(x, t) ∂u/∂x) + f(x, t) ∫_0^x g(x', t, u(x', t)) dx' = 0 ``` 可以将其转化为: ``` c(x, t, u) ∂u/∂t = ∂/∂x (a(x, t, u) ∂u/∂x) + f(x, t) h(x, t, u) ``` 其中 `c(x, t, u) = 1`、`a(x, t, u) = a(x, t)`、`f(x, t, u) = f(x, t)` 和 `h(x, t, u) = ∫_0^x g(x', t, u(x', t)) dx'`。 然后,我们可以使用如下的 Matlab 代码来求解该方程: ```matlab function [c, f, s] = pde(x, t, u, dudx) a = 1; % 定义 a(x, t, u) f = f(x, t); % 定义 f(x, t, u) g = g(x, t); % 定义 g(x, t, u) h = cumtrapz(x, g); % 计算 h(x, t, u) s = f .* h; % 定义 s(x, t, u) c = 1; f = a * dudx; s = s; end function u0 = u_initial(x) u0 = % 定义初始条件 end function [pl, ql, pr, qr] = boundary_conditions(xl, ul, xr, ur, t) pl = % 定义左边界条件 ql = % 定义左边界条件 pr = % 定义右边界条件 qr = % 定义右边界条件 end x = linspace(x_start, x_end, x_points); t = linspace(t_start, t_end, t_points); sol = pdepe(0, @pde, @u_initial, @boundary_conditions, x, t); ``` 其中 `pde` 函数定义了方程的系数,`u_initial` 函数定义了初始条件,`boundary_conditions` 函数定义了边界条件,`x_start`、`x_end`、`x_points`、`t_start`、`t_end` 和 `t_points` 分别为求解区间的起始点、终止点和点数。最后调用 `pdepe` 函数求解方程,并将结果存储在 `sol` 变量中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值