解:树状数组,区间修改,区间查询。B是序列A的差分数组,树状数组tr维护的是B的前缀和,查询区间和的公式为:
容易知道这个式子复杂度是n^2,因此需要等价变形,变形后的求和公式为:
这个式子的复杂度为线性,已经足够好了。为了计算上面这个式子,我们需要使用两个树状数组来分别维护B[i]和i*B[i],剩下的就是套模板了。
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i = a;i<n;i++)
#define per(i,a,n) for(int i = n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define eb emplace_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define yes cout<<"YES"<<'\n';
#define no cout<<"NO"<<'\n';
#define endl '\n';
typedef vector<int> VI;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef double db;
mt19937 mrand(random_device{}());
const ll MOD=1000000007;
int rnd(int x) {return mrand() % x;}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;};
ll lcm(int a,int b){return a*b/gcd(a,b);};
const int N=100010;
int n,m;
int a[N];
ll tr1[N],tr2[N];
int lowbit(int x){
return x&-x;
}
void add(ll tr[],int x,ll k){
for(int i=x;i<=n;i+=lowbit(i)){
tr[i]+=k;
}
}
ll query(ll tr[],int x){
ll res=0;
for(int i=x;i;i-=lowbit(i)) res+=tr[i];
return res;
}
ll get(int x){
return query(tr1,x)*(x+1)-query(tr2,x);
}
int main(){
ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>m;
rep(i,1,n+1) cin>>a[i];
rep(i,1,n+1){
int b=a[i]-a[i-1];
add(tr1,i,b);
add(tr2,i,1LL*b*i);
}
rep(i,0,m){
char op;
int l,r,d;
cin>>op>>l>>r;
if(op=='C'){
cin>>d;
add(tr1,l,d);
add(tr2,l,l*d);
add(tr1,r+1,-d);
add(tr2,r+1,-(r+1)*d);
}else{
cout<<get(r)-get(l-1)<<endl;
}
}
return 0;
}
时间复杂度:O(nlogn)。
空间复杂度:O(n)。