树状数组——一个简单的整数问题2

一个简单的整数问题2

解:树状数组,区间修改,区间查询。B是序列A的差分数组,树状数组tr维护的是B的前缀和,查询区间和的公式为:

\sum_{i=1}^{x} B[i]\sum_{j=1}^{i}B[j]

容易知道这个式子复杂度是n^2,因此需要等价变形,变形后的求和公式为:

(x+1)*\sum_{i=1}^{x}B[i]-\sum_{i=1}^{x}i*B[i]

这个式子的复杂度为线性,已经足够好了。为了计算上面这个式子,我们需要使用两个树状数组来分别维护B[i]和i*B[i],剩下的就是套模板了。

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i = a;i<n;i++)
#define per(i,a,n) for(int i = n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define eb emplace_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define yes cout<<"YES"<<'\n';
#define no cout<<"NO"<<'\n';
#define endl '\n';
typedef vector<int> VI;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef double db;
mt19937 mrand(random_device{}());
const ll MOD=1000000007;
int rnd(int x) {return mrand() % x;}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;};
ll lcm(int a,int b){return a*b/gcd(a,b);};

const int N=100010;
int n,m;
int a[N];
ll tr1[N],tr2[N];

int lowbit(int x){
	return x&-x;
}

void add(ll tr[],int x,ll k){
	for(int i=x;i<=n;i+=lowbit(i)){
		tr[i]+=k;
	}
}

ll query(ll tr[],int x){
	ll res=0;
	for(int i=x;i;i-=lowbit(i)) res+=tr[i];
	return res;	
}

ll get(int x){
	return query(tr1,x)*(x+1)-query(tr2,x);
}

int main(){
	ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
	cin>>n>>m;
	rep(i,1,n+1) cin>>a[i];
	rep(i,1,n+1){
		int b=a[i]-a[i-1];
		add(tr1,i,b);
		add(tr2,i,1LL*b*i);
	}
	rep(i,0,m){
		char op;
		int l,r,d;
		cin>>op>>l>>r;
		if(op=='C'){
			cin>>d;
			add(tr1,l,d);
			add(tr2,l,l*d);
			add(tr1,r+1,-d);
			add(tr2,r+1,-(r+1)*d);
		}else{
			cout<<get(r)-get(l-1)<<endl;
		}
		
	}
	return 0;
}

时间复杂度:O(nlogn)。

空间复杂度:O(n)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值