BFS——迷宫问题

迷宫问题

        用bfs求(0,0)到右下角的最短路径,同时记录每个点的前驱,然后反向输出答案即可。

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i = a;i<n;i++)
#define per(i,a,n) for(int i = n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define eb emplace_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define yes cout<<"YES"<<'\n';
#define no cout<<"NO"<<'\n';
#define endl '\n';
#define R register
typedef vector<int> VI;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef double db;
mt19937 mrand(random_device{}());
const ll MOD=1000000007;
int rnd(int x) {return mrand() % x;}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;};
ll lcm(int a,int b){return a*b/gcd(a,b);};

int n;
int g[1010][1010];
int pre[1010][1010][2];
int dx[4]={-1,1,0,0};
int dy[4]={0,0,-1,1};

int main(){
	ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
	memset(pre,-1,sizeof pre);
	cin>>n;
	rep(i,0,n){
		rep(j,0,n){
			cin>>g[i][j];
		}
	}
	queue<PII> q;
	q.push({0,0});
	while(!q.empty()){
		auto [x,y]=q.front();
		q.pop();
		rep(i,0,4){
			int xx=x+dx[i],yy=y+dy[i];
			if(xx<0||xx>=n||yy<0||yy>=n||g[xx][yy]==1||pre[xx][yy][0]!=-1) continue;
			if(xx==0&&yy==0) continue;
			pre[xx][yy][0]=x,pre[xx][yy][1]=y;
			q.push({xx,yy});
		}
		if(pre[n-1][n-1][0]!=-1) break;
	}
	
	vector<PII> ans;
	for(int i=n-1,j=n-1;~i;){
		ans.pb({i,j});
		int ii=pre[i][j][0];
		int jj=pre[i][j][1];
		i=ii,j=jj;
	}
	per(i,0,SZ(ans)) cout<<ans[i].fi<<" "<<ans[i].se<<endl;
	return 0;
}

时间复杂度:O(n^2)

空间复杂度:O(n^2)

### 使用 BFS 算法寻找迷宫的最短路径 BFS(广度优先搜索)是一种适合用于求解无权图中最短路径问题的经典算法。它通过逐层扩展的方式,能够确保首次访问某个节点时所经过的路径是最短的。 #### 迷宫模型构建 在一个 N×N 的二维网格中,每个位置可以用坐标 (x, y) 表示。对于给定的迷宫地图,0 表示可通行的位置,9 表示障碍物不可通行的位置,而必经点则标记为 1 到 M。为了实现 BFS,在程序设计上通常需要定义以下几个部分: - **起始状态**:起点作为初始状态入队。 - **终止条件**:当搜索到目标终点时停止。 - **邻接关系**:从当前格子出发,向四个方向移动(上下左右)。如果新位置有效且未被访问过,则将其加入队列并记录其前驱结点以便后续回溯路径[^1]。 #### 实现步骤解析 以下是基于上述理论的具体实现方法: 1. 初始化一个队列并将起点放入其中; 2. 创建一个布尔数组或者集合来跟踪哪些单元已经被探索过了以防重复遍历; 3. 对于每次迭代弹出队首元素尝试朝四周扩张; 4. 如果遇到新的合法区域即尚未触及之地便登记下来同时更新距离信息以及指向父亲节点指针; 5. 当抵达目的地瞬间立即结束循环因为此时必然代表发现了一条最优路线; 下面给出一段 Python 示例代码展示这一过程: ```python from collections import deque def bfs_maze(maze, start, end): n = len(maze) visited = [[False]*n for _ in range(n)] queue = deque() queue.append((start[0], start[1], [])) visited[start[0]][start[1]] = True directions = [(0,-1),(0,1),(-1,0),(1,0)] # 左右上下四种移动方式 while queue: x,y,path = queue.popleft() if (x,y)==end: return path+[end] for dx,dy in directions: nx,ny=x+dx,y+dy if 0<=nx<n and 0<=ny<n and not visited[nx][ny] and maze[nx][ny]!=9: visited[nx][ny]=True queue.append((nx, ny, path+[(x,y)])) return ["No Answer."] ``` 此函数接受三个参数分别是迷宫矩阵`maze`, 起点座标 `start` 和终点座标 `end`. 它返回的是从起点至终点的一系列中间过渡点构成的最佳路径列表形式的结果或者是"No Answer."字符串表明找不到可行方案. #### 结果解释与验证 一旦执行完毕该段脚本后得到输出结果应当满足题目需求——要么提供确切解答说明具体行走轨迹及其总步数;要么明确告知无法达成目的情形下的否定答复[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值