第二章、感知机

感知机原理剖析及实现

模型:

一条能够区分所有类别的函数f(x),这就是本次求解模型

其中,

策略:

如果我们把所有分错的点到分割平面的距离求和,让这段求和的值最小,呢么这个平面就是我们的f(x)

点到平面的距离:

 

算法:

梯度下降法

 

'''
数据集:Mnist
训练集数量:60000
测试集数量:10000
iter:30
------------------------------
运行结果:
正确率:0.8172(二分类)
运行时长:53.49
'''

import numpy as np
import time
from tqdm import tqdm

# 读取data和label, label[0---4]:0  [5--9]:1
# 对data做归一化
def loadData(fileName):
    '''
    加载Mnist数据集
    :param fileName:要加载的数据集路径
    :return: list形式的数据集及标记
    '''
    print('start to read data')
    data = []; label = []
    fr = open(fileName, 'r')
    for line in fr.readlines():
        curLine = line.strip().split(',')
        if int(curLine[0]) >= 5:
            label.append(1)
        else:
            label.append(-1)
        data.append([int(num)/255 for num in curLine[1:]])
    return data, label

def perceptron(dataArr, labelArr, iter=50):
    '''
    :param dataArr:训练集的数据 (list)
    :param labelArr: 训练集的标签(list)
    :param iter: 迭代次数,默认50
    :return: 训练好的w和b
    '''
    print('start to trans')
    dataMat = np.mat(dataArr)
    labelMat = np.mat(labelArr).T
    #获取数据矩阵的大小,为m*n
    m, n = np.shape(dataMat)
    w = np.zeros((1, np.shape(dataMat)[1]))
    b= 0
    h = 0.0001
    for k in tqdm(range(iter)):
        for i in range(m):   # 逐一遍历,梯度下降
            xi = dataMat[i]
            yi = labelMat[i]
            if -1 * yi * (w * xi.T + b) >= 0:
                w = w + h *  yi * xi
                b = b + h * yi
    return w, b


def test(dataArr, labelArr, w, b):
    '''
    测试准确率
    :param dataArr:测试集
    :param labelArr: 测试集标签
    :param w: 训练获得的权重w
    :param b: 训练获得的偏置b
    :return: 正确率
    '''
    print('start to test')
    dataMat = np.mat(dataArr)
    labelMat = np.mat(labelArr).T
    m, n = np.shape(dataMat)
    errorCnt = 0
    for i in range(m):
        xi = dataMat[i]
        yi = labelMat[i]
        result = -1 * yi * (w * xi.T + b)
        if result >= 0: errorCnt += 1
    accruRate = 1 - (errorCnt / m)
    return accruRate

if __name__ == '__main__':
    start = time.time()
    #获取训练集及标签
    trainData, trainLabel = loadData('../Mnist/mnist_train.csv')
    #获取测试集及标签
    testData, testLabel = loadData('../Mnist/mnist_test.csv')
    #训练获得权重
    w, b = perceptron(trainData, trainLabel, iter = 30)
    #进行测试,获得正确率
    accruRate = test(testData, testLabel, w, b)
    #获取当前时间,作为结束时间
    end = time.time()
    #显示正确率
    print('accuracy rate is:', accruRate)
    #显示用时时长
    print('time span:', end - start)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值