目录
最近有一个想法,把基础的东西自己总结一遍,后期有了新的理解不断完善
卷积过程:
图(1)
gif理解了,卷积的过程也就理解了;
1、什么是卷积
图像中不同数据窗口的数据和卷积核作内积的操作叫做卷积,本质是提取图像不同频段的特征。和图像处理中的高斯模糊核原理一样。
2、什么是卷积核
图(2)
也称为滤波器filter,带着一组固定权重的神经元,通常是3x3矩阵,一个卷积核的滤波可以用来提取特定的特征(例如可以提取物体轮廓、颜色深浅等),通过卷积层从原始数据中提取出新的特征的过程又成为feature map(特征映射),上图(1)卷积核大小是3X3.,说明下现在卷积核和卷积层之间的概念很模糊了,卷积核和卷积层概念已经混淆。但是还是得说下最准确的说法
3、什么是卷积层
多个滤波器叠加便成了卷积层。上图(1)卷积层大小是3X3x3(CxHxW). C:表示channel,通道的意思
4、一个卷基层有多少个参数:
上图(1)卷积层参数是是3X3x3x2(C1xHxWxC2)输入特征通道 x 卷积核H x 卷积核W x 输出特征的通道
5、通道(chennel)怎么理解:
通道可以理解为视角、角度。每个chennel表示不同的含义
6、几个参数:
深度depth:卷积层个数,上图(1)2个,决定输出的通道数上图(1)输出通道2个。
步长stride:决定滑动多少步可以到边缘,上图(1)步长为2。
填充值zero-padding:在外围边缘补充若干圈0,方便从初始位置以步长为单位可以刚好滑倒末尾位置,通俗地讲就是为了总长能被步长整除。 上图(1)zero-padding 是1。
7、如何理解权值共享,减少了神经网络需要训练的参数的个数?
https://blog.csdn.net/lien0906/article/details/51249947这个解释的挺好
来自: