第4关 sklearn中的k-means (educoder

本文通过使用sklearn中的K-means模型实现红酒数据的聚类任务。给出的代码示例展示了如何根据13个特征将178个红酒样本分为3类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编程要求

        请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,完使用 sklearn 中的K-means模型实现红酒聚类任务。

通关代码

#encoding=utf8
from sklearn.cluster import KMeans

def kmeans_cluster(data):
    '''
    input:data(ndarray):样本数据
    output:result(ndarray):聚类结果
    '''
    #********* Begin *********#
    km = KMeans(n_clusters=3,random_state=888)
    result = km.fit_predict(data)
    #********* End *********# 
    return result

(更多通关代码请点击主页)


相关知识

        为了完成本关任务,你需要掌握:1.KMeans

数据集介绍

        数据集为一份红酒数据,一共有178个样本,每个样本有13个特征,这里不会提供你红酒的标签,你需要自己根据这13个特征对红酒进行聚类,部分数据如下图:


仍在学习路上......接受指正,积极完善

### 如何在sklearn中使用k-means算法 `scikit-learn` 提供了一个强大的工具 `KMeans` 来实现 k-means 聚类算法。以下是于如何在 `sklearn` 中使用该算法的具体说明。 #### 导入必要的模块 为了使用 `KMeans` 类,需要先导入它以及其他可能需要用到的相模块: ```python from sklearn.cluster import KMeans import numpy as np ``` #### 数据准备 数据应以二维数组的形式提供给模型训练。如果原始数据不是这种形式,则需对其进行预处理。例如,可以利用 NumPy 创建一个简单的二维数组作为输入数据: ```python X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]) ``` 此部分展示了如何构建适合用于聚类分析的数据结构[^2]。 #### 初始化并拟合模型 创建 `KMeans` 实例对象时可指定多个参数,其中最重要的一个是簇的数量 (`n_clusters`)。下面是一个基本的例子展示如何初始化和拟合模型: ```python kmeans = KMeans(n_clusters=2, random_state=0).fit(X) ``` 上述代码片段设置了两个簇,并指定了随机种子以便结果具有重现性[^3]。 #### 获取预测标签 一旦模型被成功训练,就可以获取每个样本对应的簇标记: ```python labels = kmeans.labels_ print(labels) ``` 这一步骤返回的是一个整型列表,表示各个点分别属于哪个簇[^1]。 #### 查看质心坐标 还可以查看所得到的各簇中心的位置信息: ```python centroids = kmeans.cluster_centers_ print(centroids) ``` 这些质心代表了各自簇内的平均位置。 #### 预测新数据点归属 对于新的未见过的数据点,也可以预测它们应该归属于哪一个已知的簇之中: ```python new_points = [[0, 0], [12, 3]] predicted_labels = kmeans.predict(new_points) print(predicted_labels) ``` 这段程序演示了怎样应用已经建立起来的模型去分类未知的新实例。 #### 总结注意事项 需要注意的是,在实际操作过程中,选择合适的 \(K\) 值是非常重要的环节之一;另外,由于每次迭代都需要计算所有样本与当前质心的距离系,因此当面对非常庞大的数据集合时,可能会遇到性能瓶颈问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值