codevs1039 数的划分【黄金】【dp】

 

问题链接:1039数的划分

 

题目描述 Description

将整数n分成k份,且每份不能为空,任意两种划分方案不能相同(不考虑顺序)。
例如:n=7,k=3,下面三种划分方案被认为是相同的。
1 1 5

1 5 1

5 1 1
问有多少种不同的分法。

输入描述 Input Description

输入:n,k (6<n<=200,2<=k<=6)

输出描述 Output Description


输出:一个整数,即不同的分法。

样例输入 Sample Input

 7 3

样例输出 Sample Output

4

 

问题分析:与放苹果的题类似

f[i][j]表示数i被分为j份,共有两种情况,一种是不含1的,一种是含有1的。

不含1的可看作是每一份都减去1,共减去j,情况不变,即f[i-j][j];

含有1的可看作是数i-1被分为j-1份,即第j份为1,也就是f[i-1][j-1];

即f[i][j]=f[i-j][j]+f[i-1][j-1]。

#include <iostream>
using namespace std;
ac
f[i][j]=f[i-1][j-1]+f[i-j][j]
分两种情况:全都不是1+至少有一个为1 
int f[250][10];
int main()
{
	int n,k;
	cin>>n>>k;
	for(int i=1;i<=n;i++)
	{
		f[i][1]=1;
	}
	for(int i=2;i<=n;i++)
	{
		for(int j=2;j<=k;j++)
		{
			if(j<=i)
			{
				f[i][j]=f[i-1][j-1]+f[i-j][j];
			}
		}
	}
	cout<<f[n][k]<<endl;
	return 0;
}

动态规划想不到的话,还可以用深搜写,因为本题数据量较小。具体分析见注释。

#include <iostream>
using namespace std;
///ac
int dfs(int n,int k,int i)//n个数被分为k份,每份至少为i 
{
	int sum=0;
	if(k==1)//只能被分为1份时,只有一种情况 
	{
		sum++;
		return sum;
	}
	else
	{
		for(int j=i;j<=n/k;j++)//递增设置最少放置个数,防止重复 
		{
			if(n-j>k-1)
			{
				sum+=dfs(n-j,k-1,j);
			
			} 		
		}
		return sum;
	}	
}
int main()
{
	int n,k;
	cin>>n>>k;
	int s=dfs(n,k,1);
	cout<<s<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值