题目描述:股票买卖IV
给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i天的价格。设计一个算法来计算你所能获取的最大利润,你最多能够完成 k笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉以前的股票)。一次买入卖出合为一笔交易。
输入格式设计
第一行包含整数 N和 k,表示数组的长度以及你能够完成的最大交易数量。
第二行包含 N个不超过 10000的正整数,表示完整的数组。
输出格式
输出一个整数,表示最大利润。
数据范围
1≤N≤10^5,
1≤k≤100
输入样例1:
3 2
2 4 1
输出样例1:
2
输入样例2:
6 2
3 2 6 5 0 3
输出样例2:
7
样例解释
样例1:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能得到利润 = 4-2 = 2 。
样例2:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能得到利润 = 6-2 = 4 。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能得到利润 = 3-0 = 3 。共计利润 4+3 = 7.
分析:
本题要求交易不超过k次交易赚取的最大利润,一次买卖为一次交易。
根据上图的状态机,若是当前状态持有股票,到下一天能够选择继续持有,也能够选择卖出;若是当前状态未持仓,到下一天能够继续不持仓也能够买进。因为有k次交易的限制,状态表示时须要加入一维表示已经交易的次数,这里买入一次视为开始了一次交易。f[i][j][0]表示到第i天已经进行了j次交易且此时未持仓,f[i][j][1]表示到第i天已经进行了j次交易且此时持有仓位。首先看要到达f[i][j][0]的状态前一天的状态能够是0或者1,若是前一天的状态是0,说明前一天未持仓且已经进行了j次交易,即f[i][j][0] = f[i-1][j][0],若是前一天有持仓,说明第i天卖出了股票,第i-1天的状态是f[i-1][j][1],f[i][j][0] = f[i-1][j][1] + w[i],加上w是由于卖出到帐w元,故f[i][j][0] = max(f[i-1][j][0],f[i-1][j][1]+w[i])。同理,要到达状态f[i][j][1],若前一天状态是0,则第i天买入了股票,进行了第j次交易,前一天只进行了j-1次交易,即f[i][j][1] = f[i-1][j-1][0] - w[i],减去w表示买入股票扣了w元;若前一天的状态是1,则说明第i天未进行操做,f[i][j][1] = f[i-1][j][1],故f[i][j][1] = max(f[i-1][j][1],f[i-1][j-1][0]-w[i])。从而状态转移方程就求出来了,下面考虑边界状态,f[i][0][0]表示第i天都未进行交易,收益是0,除此以外,f[i][[j][0]与f[i][0][1]的初始状态都应该是不合法的,设置为-INF。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005,M = 105;
int f[N][M][2];
int main(){
int n,k,price;
scanf("%d%d",&n,&k);
memset(f,-0x3f,sizeof f);
f[0][0][0] = 0;
for(int i = 1;i <= n;i++){
scanf("%d",&price);
f[i][0][0] = 0;
for(int j = 1;j <= k;j++){
f[i][j][0] = max(f[i-1][j][0],f[i-1][j][1]+price);
f[i][j][1] = max(f[i-1][j-1][0]-price,f[i-1][j][1]);
}
}
int res = 0;
for(int i = 0;i <= k;i++) res = max(res,f[n][i][0]);
printf("%d\n",res);
return 0;
}
因为第i天的状态仅用到了第i-1天的状态,因此能够用滚动数组实现,须要倒着枚举交易次数防止须要的状态被覆盖。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int M = 105;
int f[M][2];
int main(){
int n,k,price;
scanf("%d%d",&n,&k);
memset(f,-0x3f,sizeof f);
f[0][0] = 0;
for(int i = 1;i <= n;i++){
scanf("%d",&price);
for(int j = k;j >= 1;j--){
f[j][0] = max(f[j][0],f[j][1]+price);
f[j][1] = max(f[j-1][0]-price,f[j][1]);
}
}
int res = 0;
for(int i = 0;i <= k;i++) res = max(res,f[i][0]);
printf("%d\n",res);
return 0;
}
仅供参考。