一: 参数检验与非参数检验
1,参数检验是针对参数做的假设,非参数检验是针对总体分布情况做的假设,这个是区分参数检验和非参数检验的一个重要特征。
2,二者的根本区别在于参数检验要利用到总体的信息(总体分布、总体的一些参数特征如方差),以总体分布和样本信息对总体参数作出推断;非参数检验不需要利用总体的信息(总体分布、总体的一些参数特征如方差),以样本信息对总体分布作出推断。
3,参数检验只能用于等距数据和比例数据,非参数检验主要用于记数数据。也可用于等距和比例数据,但精确性就会降低。
非参数检验往往不假定总体的分布类型,直接对总体的分布的某种假设(例如如称性、分位数大小等等假设)作统计检验。当然,上一节介绍的拟合优度检验也是非参数检验。除了拟合优度检验外,还有许多常用的非参数检验。最常见的非参数检验统计量有 3类:计数统计量、秩统计量、符号秩统计量。
================================
参数检验是在已知总体分布的条件下(一般要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验,有时还要求某些总体参数满足一定条件。如独立样本的T检验和方差分析不仅要求总体符合正态分布,还要求各总体方差齐性。教材第八章之前所介绍的统计方法都是参数检验法。
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一般性假设(如总体分布的位置是否相同,总体分布是否正态)进行检验。
================================
参数检验, 此时已经假定了总体的分布信息, 根据期望、方差、和样本信息等推断分布的参数。
非参数检验, 不假定总体分布; 直接从样本信息推断总体分布
参数检验会用到总体的信息(参数特征)?
================================
许多统计分析方法的应用对总体有特殊的要求,如t检验要求总体符合正态分布,F检验要求误差呈正态分布且各组方差整齐,等等。这些方法常用来估计或检验总体参数,统称为参数统计。
但许多调查或实验所得的科研数据,其总体分布未知或无法确定,这时做统计分析常常不是针对总体参数,而是针对总体的某些一般性假设(如总体分布),这类方法称非参数统计(Nonparametric tests)。
非参数统计方法简便,适用性强,但检验效率较低,应用时应加以考虑。
Chi-Square过程
调用此过程可对样本数据的分布进行卡方检验。卡方检验适用于配合度检验,主要用于分析实际频数与某理论频数是否相符。