检验 (杂)

一:   参数检验与非参数检验

1,参数检验是针对参数做的假设,非参数检验是针对总体分布情况做的假设,这个是区分参数检验和非参数检验的一个重要特征。
2,二者的根本区别在于参数检验要利用到总体的信息(总体分布、总体的一些参数特征如方差),以总体分布和样本信息对总体参数作出推断;非参数检验不需要利用总体的信息(总体分布、总体的一些参数特征如方差),以样本信息对总体分布作出推断。
3,参数检验只能用于等距数据和比例数据,非参数检验主要用于记数数据。也可用于等距和比例数据,但精确性就会降低。

非参数检验往往不假定总体的分布类型,直接对总体的分布的某种假设(例如如称性、分位数大小等等假设)作统计检验。当然,上一节介绍的拟合优度检验也是非参数检验。除了拟合优度检验外,还有许多常用的非参数检验。最常见的非参数检验统计量有 3类:计数统计量、秩统计量、符号秩统计量。

 

================================

参数检验是在已知总体分布的条件下(一般要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验,有时还要求某些总体参数满足一定条件。如独立样本的T检验和方差分析不仅要求总体符合正态分布,还要求各总体方差齐性。教材第八章之前所介绍的统计方法都是参数检验法。

  非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一般性假设(如总体分布的位置是否相同,总体分布是否正态)进行检验。

 

================================

参数检验, 此时已经假定了总体的分布信息, 根据期望、方差、和样本信息等推断分布的参数。

非参数检验, 不假定总体分布; 直接从样本信息推断总体分布

参数检验会用到总体的信息(参数特征)?

================================

 

 

 

许多统计分析方法的应用对总体有特殊的要求,如t检验要求总体符合正态分布,F检验要求误差呈正态分布且各组方差整齐,等等。这些方法常用来估计或检验总体参数,统称为参数统计。

    但许多调查或实验所得的科研数据,其总体分布未知或无法确定,这时做统计分析常常不是针对总体参数,而是针对总体的某些一般性假设(如总体分布),这类方法称非参数统计(Nonparametric tests)。

    非参数统计方法简便,适用性强,但检验效率较低,应用时应加以考虑。

 

Chi-Square过程

 调用此过程可对样本数据的分布进行卡方检验卡方检验适用于配合度检验,主要用于分析实际频数与某理论频数是否相符。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值