一、lod函数简介
LOD函数的全称是详细级别表达式(Level Of Detail Expressisons)。它主要是为了克服一些表达式之间计算颗粒度不一致的问题。比如,要计算第一季度各月销售收入占比,这里分子计算颗粒度为’月’,但是分母的计算颗粒度却为’季度’,这时就有可能用到lod函数。
在Quick BI中lod函数有三个,如下:
lod_fixed{<声明维度>:<聚合表达式>[:过滤条件]}
lod_ include{<声明维度>:<聚合表达式>[:过滤条件]}
lod_exclude{<声明维度>:<聚合表达式>[:过滤条件]}
这三个函数最主要的作用,就是在新建计算字段时,规定内部过滤条件、限定外部过滤条件,指明了分组依据。下面详细介绍一下这三个函数。
二、lod_include函数介绍
lod_include{维度1[,维度2]…:聚合表达式[:过滤条件]}
- 维度1[,维度2]...:声明维度,为分组维度。使用逗号分隔各个维度。必须。
- 聚合表达式:聚合表达式是所执行的计算,用于定义目标维度。
- 过滤条件:内部过滤条件,对数据表进行过滤的条件,非必须。
lod_include的执行逻辑:先按内部和外部的过滤条件进行过滤,再按声明维度进行分组,然后进行聚合运算,形成一张虚表,所以lod_fixed函数返回的是一张表,通常需要聚合后才能使用。
三、数据表---《销售单据表》
月份 | 区域 | 客户 | 订单号 | 金额 |
1月 | 南区 | 南A | d001 | 100 |
1月 | 南区 | 南B | d002 | 200 |
1月 | 南区 | 南C | d003 | 300 |
1月 | 北区 | 北A | d004 | 350 |
1月 | 北区 | 北B | d005 | 200 |
2月 | 南区 | 南A | d006 | 200 |
2月 | 南区 | 南C | d007 | 300 |
2月 | 北区 | 北A | d008 | 300 |
2月 | 北区 | 北B | d009 | 200 |
3月 | 南区 | 南B | d010 | 150 |
3月 | 南区 | 南B | d011 | 300 |
3月 | 北区 | 北B | d012 | 450 |
3月 | 北区 | 北B | d013 | 300 |
3月 | 北区 | 北C | d014 | 250 |
四、应用示例
1、示例一:计算平均客户购买总金额
- 总金额 = SUM([金额])
- 客户数 = count(distinct [客户])
- 客户购买总金额 = lod_include{[客户]:SUM([金额])},在仪表板中,聚合方式设置为“平均值”
客户购买总金额 = lod_include{[客户]:SUM([金额])},返回一张虚拟表,这张表接受外部筛选。
注意:字段“客户”始终是分组依据,也就是再次聚合的依据字段。
2、示例二:计算1月购买总金额(带过滤条件)
- 1月客户购买总金额 = lod_include{[客户]:SUM([金额]):[月份]='1月’}
- 1月月份够买总金额 = lod_include{[月份]:SUM([金额]):[月份]='1月’}
两张图之间的差异,是由于两个字段的分组依据不一样,一个是‘[客户]’,一个是‘[月份]’。
五、小结
Lod_include函数:
1、不排除外部过滤条件
2、声明了内部分组维度,因此lod_include本质是返回的是一张分组表。
3、lod_include的返回值为一张表,因此聚合字段作为度量使用时,通常需要依据内部分组维度再次进行聚合计算,才能正常显示。
4、lod_include的作为维度使用时,直接使用聚合字段下的值作为维度,不需要再次聚合。