基于Quick BI的购物篮分析

本文介绍了购物篮分析的基本原理,包括支持度、置信度和提升度的概念,通过示例数据展示了如何使用这些指标来评估商品间的关联性。随后,详细讲解了如何在QuickBI中实际操作,连接数据源,创建数据集和仪表板,以便于进行商品关联分析和优化商品布局。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、购物篮分析原理

1、购物篮分析

很多人都听说过“啤酒与尿布湿“的故事,讲了一家超市通过对销售记录分析,发现购买尿布湿的顾客经常会同时购买啤酒,于是超市就将啤酒与尿不湿放在同一个货架上销售,结果啤酒与尿布湿的销量双双上涨。这其实就是一个典型的购物篮分析。

购物篮分析,就是通过研究用户消费数据,将不同商品之间进行关联,并挖掘二者之间联系的分析方法,也称做商品关联分析法。判断商品A和商品B之间关联程度常用指标有:

(1)支持度

(2)置信度

(3)提升度

2、支持度

支持度,是指商品A商品和商品B同时被购买的比例。

其中购买A或B的订单数=购买A的订单数+购买B的订单数-同时购买A和B的订单数。

支持度小于等于1。

示例:购买可乐或薯片的订单共有10笔,其中同时购买可乐和薯片的次数是7次,那么可乐+薯片组合的支持度就是7/10=70%。

支持度越高,说明A商品和B商品关联性越强。支持度越高,意味着顾客习惯将A和B一起购买,可以主动向购买A的顾客推荐B,也可以主动向购买B

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小崔2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值