【算法合集】关于数论

✅🎡个人主页:程序猿追

✅🎡系列专栏:算法合集

✅🎡目前状态:创建Java学习之路(零基础到就业实战)系列,目前更新到JAVAWEB开发

✅🎡作者简介:大家好,我是程序猿追,全栈领域新星创作者,算法爱好者,常在作者周榜排名前30,某不知名的 ACMer

✅🎡推荐一款刷题面试找工作三不误的网站——牛客网

✅🎡个人名言:不积跬步无以至千里,趁年轻,使劲拼,给未来的自己一个交代!

目录

一、 欧几里得算法

二、扩展欧几里得算法

三、求素数问题

3.1 试除法

3.2 朴素版的筛素数

3.3 埃式筛法

3.4 线性筛法

3.5 比较快的判断素数的方法

四、欧拉函数


一、 欧几里得算法

✅欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。

✨作用:求两个正整数的最大公约数。

🎀时间复杂度: O(logn)。

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

我们这里求了最大公约数那么最小公倍数就不要落下了

int lcm(int a, int b)
{
    return a * b / gcd(a, b);
}

二、扩展欧几里得算法

✅这里我们有一个定理

裴蜀定理:若 a, b是整数,且 (a, b) = d,那么对于任意的整数 x, y, ax + by 都一定是 d 的倍数,特别地,一定存在整数 x, y使 ax + by = d成立。

也就是说我们给出 a,b 来求出 x,y 的值。 

🎀时间复杂度: O(logn)

int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1; y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= (a/b) * x;
    return d;
}

 我们直接上题目

 

 三、求素数问题

✅素数问题是我们经典的题,什么是素数?

素数一般指质数。质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数

✨说明:以下 primes[N],cnt是属于 int 数组,st[N] 是属于 bool 数组,而 N 是 const 定义的大小。

🎀primes 就是用来装素数的,cnt 用来计数的,st 用来记录是否是素数的。

3.1 试除法

bool sushu(int n)
{
    if(n == 1) return false;

    for(int i = 2; i <= n / i; i ++)
        if(n % i == 0)
            return false;

    return true;
}

 

这是我们通常的做法,也是最容易理解的做法。 

3.2 朴素版的筛素数

void get_primes1(int n) 
{
    for(int i = 2; i <= n; i++) 
    {
        if(!st[i]) prime[cnt ++] = i;
        for(int j = i + i; j <= n; j += i)
            st[j] = true;
    }
}

通过 st 数组的 true 与 false 来区分是否是素数。 

3.3 埃式筛法

以上我们知道了如何判断素数,但在一区间里面例如 2 ~ 10 里面有多少个素数呢?那么接下来我们来看看。

void get_primes2(int n) 
{
    for(int i = 2; i <= n; i++) 
    {
        if(!st[i])
        { 
            prime[cnt ++] = i;
            for(int j = i; j <= n; j += i)
                st[j] = true;
        }
    } 
}

🎀但我们明显发现时间复杂度为O(nlogn),太~高了,很容易 TLE,那么如何提速呢?看看下面的线性筛法吧。

3.4 线性筛法

✅在 O(n) 的时间复杂度内求出 1∼n 之间的所有质数。

void get_prime(int n) 
{
    for(int i = 2; i <= n; i++) 
    {
        if(!st[i]) prime[cnt++] = i;
        for(int j = 0; prime[j] <= n / i; j++)
        {
            st[prime[j] * i] = true;
            if(i % prime[j] == 0) break;
        }
    }
} 

这里的用法就和上面的一模一样了,我就不展示了。 

3.5 比较快的判断素数的方法

bool ispri(int k) 
{
    if(k <= 1) return false;
    if(k <= 3) return true;
    if(k % 6 != 1 && k % 6 != 5) return false;
    for(int i = 5;i < k / i;i += 6) {
        if(k % i == 0 || k % (i + 2) == 0) return false;
    }
    return true;
}

四、欧拉函数

✅欧拉函数,一般记为 ϕ(n),表示小于等于 n 的数中与 n 互质的数的个数。

void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0)
            {
                euler[i * primes[j]] = euler[i] * primes[j];
                break;
            }
            euler[i * primes[j]] = euler[i] * (primes[j] - 1);
        }
    }
}

算法对程序员来说及其重要,语言和开发平台不断变化,但是万变不离其宗的是那些算法和理论,依稀记得我那个玩的很好的一个学长(在大二就拿到了 offer),他告诉我想找一个好的工作,那刷题一定是必不可少的

现在算法刷题平台还是蛮多的,给大家介绍一个我认为与大厂关联最深的平台——牛客网

内容简介: 本书论述了算法数论的基本内容,其中包括:连分数、代数数域、椭圆曲线、素性检验、大整数因子分解算法、椭圆曲线上的离散对数、超椭圆曲线。本书的特点是内容涉及面广,在有限的篇幅内,包含了必要的预备知识和数学证明,尽可能形成一个完整的体系。并且本书的部分内容曾多次在中国科学院研究生院信息安全国家重点实验室和广州大学作为硕士研究生教材使用。本书可作为信息安全、数论等专业的研究生教材及相关专业的研究人员、高等学校的教师和高年级学生的参考。 目录: 序 前言 第一章 整数的因子分解 1.1 唯一分解定理 1.2 辗转相除法(欧氏除法) 1.3 Mersenne素数和Fermat素数 1.4 整系数多项式 1.5 环Z和Z[ω] 习题一 第二章 同余式 2.1 孙子定理 2.2 剩余类环 2.3 Euler函数ρ(m) 2.4 同余方程 2.5 原根 2.6 缩系的构造 习题二 第三章 二次剩余 3.1 定义及Euler判别条件 3.2 Legendre符号 3.3 Jacobi符号 习题三 第四章 特征 4.1 剩余系的表示 4.2 特征 4.3 原特征 4.4 特征和 4.5 Gauss和 习题四 第五章 连分数 5.1 简单连分数 5.2 用连分数表实数 5.3 最佳渐近分数 5.4 Legendre判别条件 习题五 第六章 代数数域 6.1 代数整数 6.2 Dedekind整环 6.3 阶的一些性质 第七章 椭圆曲线 7.1 椭圆曲线的群结构 7.2 除子类群 7.3 同种映射 7.4 Tate模和Weil对 7.5 有限域上的椭圆曲线 习题七 第八章 在密码学中的一些应用 8.1 RSA公钥密码 8.2 Uiffie-Hellman体制 8.3 ElGamal算法 8.4 基于背包问题的公钥密码 8.5 秘密共享 第九章 素性检验 9.1 Fermat小定理及伪素数 9.2 强伪素数及Miller-Rabin检验 9.3 利用n-1的因子分解的素性检验 9.4 利用n+1的因子分解的素性检验 9.5 分圆环素性检验 9.6 基于椭圆曲线的素性检验 第十章 大整数因子分解算法 10.1 连分数因子分解算法 10.2 二次筛法 10.3 Pollard的P-1因子分解算法 10.4 椭圆曲线因子分解算法 10.5 数域筛法 习题十 第十一章 椭圆曲线上的离散对数 11.1 椭圆曲线公钥密码 11.2 小步-大步法 11.3 家袋鼠和野袋鼠 11.4 MOV约化 11.5 FR约化 11.6 SSSA约化 11.7 有限域上离散对数的计算 第十二章 超椭圆曲线 12.1 超椭圆曲线的Jacobian 12.2 虚二次代数函数域 12.3 基于超椭圆曲线的公钥密码 附录 一些常用算法 A.1 不可约多项式的判别 A.2 有限域中平方根的求解 A.3 有限域上的分解 A.4 Hensel引理 A.5 格 A.6 Z[x]中多项式的分解 参考文献 免责申明:此书是我在网络上获取的,希望对大家有用。资源版权归作者及其公司所有,如果你喜欢,请购买正版。~~~
评论 66
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿追

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值