数论基础-小白学算法必学(一天一夜的成果)万字


前言

本篇博客只是给出一些算法中常用的公式,公式的证明有兴趣的可以百度上搜也是可以的。
在最一般的意义下、数论研究各种数集合的性质.在本章中我们讨论某些特别重要的数的集合,包括整数、有理数和代数数集合.我们将简单介绍用有理数逼近实数的概念,也介绍序列(特别是整数序列)的概念,包括古希腊人所研究的一些垛积数序列.一个常见问题是如何由一些初始项来判定一个特别的整数序列.我们将简单讨论一下如何解决这种问题。


一、最大取整函数

1.定义
实数x的最大整数记为[ x ] ,是小于或等于x的最大整数。一般在计算机语言中的向下取整函数 floor()

2.定理1
如果n是整数,则对于任意实数x,都有
[ x + n ] = [ x ] + n . [x+n] = [x]+n . [x+n]=[x]+n.

3.定理2
实数x的分数部分 记为{x} ,是 x与[x]的差即
x = x − [ x ] . {x} = x - [x]. x=x[x].
4.定理3
当x为实数时
[ x ] + [ x + 1 / 2 ] = [ 2 x ] . [x] + [x + 1/2] = [2x]. [x]+[x+1/2]=[2x].
5.定理4
所有实数x和y, 都有
[ x + y ] > = [ x ] + [ y ] . [x + y] >= [x] + [y]. [x+y]>=[x]+[y].
6.定理5
当 x 和y为实数时,
[ 2 x ] + [ 2 y ] > = [ x ] + [ y ] + [ x + y ] . [2x] + [2y] >= [x] + [y] +[x+y]. [2x]+[2y]>=[x]+[y]+[x+y].
7.定理6
当 x 和y为实数时,
[ x y ] > = [ x ] ∗ [ y ] [xy] >= [x]* [y] [xy]>=[x][y]
8.定理7
当x为实数时,
− [ − x ] 是 大 于 或 等 于 x 的 最 大 整 数 。 - [-x] 是大于或等于x的最大整数。 [x]x
9.定理8

[ x + 1 / 2 ] 是 最 接 近 x 的 整 数 . [x +1/2] 是最接近x的整数. [x+1/2]x.
10.定理9
如果 m, n是正整数,则当x为实数时,
[ ( x + n ) / m ] = [ ( [ x ] + n ) / m ] [(x+n)/m] = [([x]+n)/m] [(x+n)/m]=[([x]+n)/m]


二、丢番图逼近

1.定理1
鸽笼原理
如果把k+1个或更多的的物品放入k个盒子中,那么至少有一个盒子中有两个或更多的物品。

2.定理2
狄利克雷逼近原理
如果 x 是一个实数 ,n是一个正整数,则存在整数a和b,1<=a<=n.使得
∣ a x − b ∣ < 1 / n |ax-b|<1/n axb<1/n


三、和与积

1.等比数列的求和公式
公比q 首项a, S u m = a q n + 1 − a q − 1 Sum = \frac{aq^{n+1}-a} {q-1} \quad Sum=q1aqn+1a

2.三角数,t1,t2,…tk 。是一个序列。tk,为第j行有j个点的k行三角序列中点的个数。
tn = (n+1)*n/2> t n = n ( n + 1 ) 2 t_n = \frac{n(n+1)}{2} tn=2n(n+1)
2.把两个三角阵列组合在一起,其中一个是n行另一个是n-1行,形成一个正方形阵列(如图,n=4)。
在这里插入图片描述

t n − 1 + t n = n 2 t _{n-1} + t_ n =n^2 tn1+tn=n2. 这里 t n 是第n个三角形。

3.把两个三角形阵列·组合在一起,每个都是n行,形成一个有 n *n+1 个点的矩形阵列。
t n = n ( n + 1 ) 2 t_ n = \frac {n(n+1)}{2} tn=2n(n+1

4. ∑ i = 1 n j 2 = 1 2 + 2 2 + 3 2 + . . . . + n 2 = n ∗ ( n + 1 ) ∗ ( 2 n + 1 ) 6 \sum_{i=1}^{n}{j^2}= 1^2 + 2^2 + 3^2 +....+n^2 = \frac {n*(n+1)*(2n+1)}{6} i=1nj2=12+22+32+....+n2=6n(n+1)(2n+1)
5. ∑ i = 1 n j 3 = 1 3 + 2 3 + . . . + n 3 = [ n ∗ ( n + 1 ) 2 ] 2 . \sum_{i=1}^{n}{j^3}=1^3+2^3+ ... + n^3 = [\frac{n*(n+1)}{2}]^2. i=1nj3=13+23+...+n3=[2n(n+1)]2.
6. ∑ i = 1 n j ∗ ( j + 1 ) = 1 ∗ 2 + 2 ∗ 3 + . . . + n ∗ ( n + 1 ) = n ( n + 1 ) ( n + 2 ) 3 . \sum_{i=1}^{n}{j*(j+1)}=1*2 + 2*3 + ... + n*(n+1) = \frac{n(n+1)(n+2)}{3} . i=1nj(j+1)=12+23+...+n(n+1)=3n(n+1)(n+2).
7. 1 ∗ 1 ! + 2 ∗ 2 ! + . . . + n ∗ n ! = ( n + 1 ) ! − 1. 1*1! + 2*2! + ... + n*n! = (n+1)! -1 . 11!+22!+...+nn!=(n+1)!1.
8. ∑ i = 1 n ( − 1 ) j − 1 j 2 = 1 2 − 2 2 + 3 2 − . . . . + ( − 1 ) n − 1 n 2 = ( − 1 ) n − 1 n ( n + 1 2 \sum_{i=1}^{n}{(-1)^{j-1}j^2}=1^2-2^2+3^2-....+(-1)^{n-1}n^2=(-1)^{n-1}\frac{n(n+1}{2} i=1n(1)j1j2=1222+32....+(1)n1n2=(1)n12n(n+1
9.七巧板问题就是把每一块按照正确的方法组合在一起。
**结论:**解决n快七巧板问题恰好需要移动n-1步。
10.对所有的正整数n递归定义如下函数:f(1)=1,f(2)=5,
且对n>2,f(n+1) =f(n) +2f(n-1),有
f ( n ) = 2 n + ( − 1 ) n f(n) = 2^n +(-1)^n f(n)=2n+(1)n
11.斐波那契数 的公式求法
a = 1 + 5 2 b = 1 − 5 2 a= \frac{1+\sqrt{5}}{2} b= \frac{1-\sqrt{5}}{2} a=21+5 b=215
f n = 1 5 ( a n − b n ) f_n = \frac{1}{\sqrt{5}} (a^n-b^n) fn=5 1(anbn)

四.整除性

1.定义:如果a和b为整数且a ≠ \neq = b,我们说 a整除b是指存在整数c使得 b=ac。

2.定理1.8:如果 a|b,b|c ,则 a|c。

3.定义1.9:如果 a,b,m,n为整数,且
c|a,c|b,则
c ∣ ( m a + n b ) c|(ma+nb) c(ma+nb)

4.定义1.10(带余除法):如果a和b是整数且b>0 ,则存在唯一的整数q和r,使得
a = b q + r 0 < = r < b a=bq+r 0<=r<b a=bq+r0<=r<b
在该公式中 我们称 q为商,r为余数。我们还称a为被除数,b为除数。
5.性质1:如果a,b,c,d是整数,a和c非零,且满足
a|b,c|d ,则 ac|bd。
6.结论如果a为整数,则 3 整数 a 3 − a a^3-a a3a
7.结论:

  1. 如果两个形如 4k+1 的整数之积仍让是这个形式;
  2. 如果两个形如 6k+5 的整数之积转化为 6k+1;
  3. 而两个形如 4k+3 的整数之积则转化为 4k+1;

8.结论:

  1. 每个奇数的平方都形如 8k+1;
  2. 每个奇数的四次方都形如 16k+1;

9.结论:

  1. 任意三个连续的整数的积都能被6整除。
  2. 任意正整数 n , n 5 − n 可 以 被 5 整 除 n,n^5-n 可以被5整除 n,n5n5
  3. 三个连续的整数的立方和能被9整除。

五.整数的表示法和运算

(该章节内容会在后面进行补充)
1. 定理2.1:令b是正整数,b>1,则每个正整数n都可以被唯一的写成如下形式
n = a k b k + a k − 1 b k − 1 + . . . + a 1 b + a 0 n = a_kb^k +a_{k-1}b^{k-1} +...+ a_1b+a_0 n=akbk+ak1bk1+...+a1b+a0

五.素数和最大公因子

1. 定理3.2:
如果n是一个合数,那么n一定有一个不超过 n \sqrt{n} n 的素因子。
2. 定义: 函数 π ( x ) \pi(x) π(x)表示不超过x的素数的个数。
π ( x ) \pi(x) π(x)可以用 x l o g ( x ) 来 近 似 表 示 \frac{x}{log(x)} 来近似表示 log(x)x
3. 结论:
具 有 n 3 + 1 形 式 的 整 数 都 不 是 素 数 , 除 了 2. 具有 n^3+1形式的整数都不是素数,除了2. n3+12.
4. 定义:
两个不同时为零的整数a,b的最大公因子就是指能同时整除a和b的最大的整数。记为 (a,b)
5. 定理3.6:
如果两个整数a,b,且(a,b)=d,那么
( a / d , b / d ) = = 1 (a/d,b/d)==1 (a/d,b/d)==1
6. 定义:
如果两个整数a,b的最大公因子(a,b)==1,则称这两个数互素的。
7. 定理3.7:令a,b,c是整数,那么
( a + c b , b ) = ( a , b ) (a+cb,b) = (a,b) (a+cb,b)=(a,b)
8. 定理:如果整数a,b互素,那么存在整数m,n,使得 ma+nb = 1 .
9. 结论:如果a,b是不全为零的偶数,那么
( a , b ) = ( a / 2 , b ) (a,b) = (a/2,b) (a,b)=(a/2,b)
10. 结论:如果非零整数a,b,c互素,那么
( a , b c ) = ( a , b ) ( a , c ) (a,bc) = (a,b)(a,c) (a,bc)=(a,b)(a,c)
11. 结论:如果k是整数,那么
整 数 6 k − 1 , 6 k + 1 , 6 k + 2 , 6 k + 3 , 6 k + 5 两 两 互 素 整数 6k-1 , 6k+1 , 6k+2 , 6k+3 , 6k+5 两两互素 6k1,6k+1,6k+2,6k+3,6k+5
12. 结论:如果k是整数,那么
3 k + 2 和 5 k + 3 互 素 3k+2 和 5k+3 互素 3k+25k+3
13. 结论:对于所有的整数
a , 8 a + 3 和 5 a + 2 互 素 a,8a+3和5a+2互素 a8a+35a+2

六.欧几里得算法

  1. 定理:如果 e和d是整数且e = dq+r,其中q,r是整数,那么
    ( e , d ) = ( d , r ) (e,d) = (d,r) (e,d)=(d,r)

  2. 定理:令 a,b是正整数,那么
    ( a , b ) = s n a + t n b , 其 中 s n 和 t n (a,b) = s_na + t_nb, 其中s_n 和 t_n (a,b)=sna+tnb,sntn是下面定义的递归序列的第n项。
    s 0 = 1 , t 0 = 0 , s_0 = 1 ,t_0 = 0, s0=1,t0=0,
    s 1 = 0 , t 1 = 1 , s_1 = 0 ,t1 = 1, s1=0,t1=1,
    s j = s j − 2 − q j − 1 s j − 1 t j = t j − 2 − q j − 1 t j − 1 s_j = s_{j-2} - q_{j-1}s_{j-1} t_j = t_{j-2} - q_{j-1}t_{j-1} sj=sj2qj1sj1tj=tj2qj1tj1其中j=1,2…,n,
    q j 是 欧 几 里 得 算 法 中 每 一 步 的 商 。 q_j是欧几里得算法中每一步的商。 qj

  3. 结论:
    ( a , b ) = { a 如 果 a = b 2 ( a / 2 , b / 2 ) 如 果 a , b 都 是 偶 数 ( a / 2 , b ) 如 果 a 是 偶 数 , b 是 奇 数 ( a − b , b ) 如 果 a , b 都 是 偶 数 , 且 a > b (a,b) = \begin{cases} a & 如果a=b \\ 2(a/2,b/2) & 如果a,b都是偶数 \\ (a/2,b) & 如果a是偶数,b是奇数 \\ (a-b,b) &如果a,b都是偶数,且a>b \\ \end{cases} a,b)=a2(a/2,b/2)(a/2,b)(ab,b)a=babababa>b

七.算术基本定理

1. 定理3.15(算术基本定理):每个大于1的正整数都可以被唯一地写成素数的乘积,在乘积中的素因子按照非降序排列。
2. 引理3.4:如果a,b和c是正整数,满足(a,b) =1且 a|bc ,则 a|c .
3. 引理3.6:如果x和y为实数,则
m a x ( x , y ) + m i n ( x , y ) = x + y . max(x,y) + min(x,y) = x+y. max(x,y)+min(x,y)=x+y.
4. 定理3.16:如果a和b是正整数,则
[ a , b ] = a b / ( a , b ) , 其 中 [ a , b ] 和 ( a , b ) 分 别 是 a 和 b 的 最 小 公 倍 数 和 最 大 公 因 子 [a,b] = ab/(a,b) ,其中[a,b] 和(a,b)分别是a和b的最小公倍数和最大公因子 [a,b]=ab/(a,b),[a,b](a,b)ab
5. 定理:设 m和n是互素的正整数,如果
d 1 和 d 2 分 别 是 m 和 n 的 正 因 子 , 则 d = d 1 d 2 是 m n 的 正 因 子 。 d_1 和d_2 分别是m和n的正因子,则d=d_1 d_2 是mn的正因子。 d1d2mnd=d1d2mn
6. 结论:一个整数n的素因子分解中所有的幂次都是偶数当且仅当n是一个完全平方数。
7. 结论: 如 果 p a ∣ ∣ m , p b ∣ ∣ n , 则 p a + b ∣ m n 如果p^a||m,p^b||n,则p^{a+b}|mn pam,pbn,pa+bmn
8. 结论:
a 3 ∣ b 3 , 则 a ∣ b a^3|b^3 ,则a|b a3b3,ab
9. 结论: 如 果 a 和 b 为 正 整 数 , 则 ( a , b ) = ( a + b , [ a , b ] ) 如果a和b为正整数,则(a,b) = (a+b,[a,b]) ab(a,b)=(a+b,[a,b])

10. 结论: [ a , b , c ] = a b c ( a , b , c ) ( a , b ) ( a , c ) ( b , c ) [a,b,c] = \frac{abc(a,b,c)}{(a,b)(a,c)(b,c)} [a,b,c]=(a,b)(a,c)(b,c)abc(a,b,c)
11. 结论: 如 果 a 和 b 为 正 整 数 , 则 ( a , b ) = ( a + b , [ a , b ] ) 如果a和b为正整数,则(a,b) = (a+b,[a,b]) ab(a,b)=(a+b,[a,b])

八.因子分解法和费马数

1. 引理:如果n是一个正的奇数,那么n分解为两个正整数的积和表示成两个平方数的差是一一对应的。
n = a b = s 2 − t 2 n=ab = s^2 - t^2 n=ab=s2t2
s = ( a + b ) / 2 , t = ( a − b ) / 2 s = (a+b)/2 ,t = (a-b)/2 s=(a+b)/2,t=(ab)/2
2. 费马数:
整 数 F n = 2 2 n + 1 被 称 为 费 马 数 , n > = 2 时 , 最 后 一 位 都 是 7 整数 F_n = 2^{2^n}+1被称为费马数,n>=2时,最后一位都是7 Fn=22n+1,n>=27
3. 定理3.20:
费 马 数 的 每 个 素 因 子 都 形 如 2 n + 2 k + 1 费马数的每个素因子都形如 2^{n+2}k+1 2n+2k+1
4. 等式:
4 x 4 + 1 = ( 2 x 2 + 2 x + 1 ) ( 2 x 2 − 2 x + 1 ) 4x^4 + 1 =(2x^2 + 2x +1) (2x^2 - 2x +1) 4x4+1=(2x2+2x+1)(2x22x+1) .

九.线性丢番图方程

  1. 定理3.23:设a,b是整数且 d = (a,b). 如果 d 不能整除c 那么方程 ax + by = c 没有整数解 。如果 d|c ,那么有无穷解。另外,如果 x = x0 , y = y0 是方程的一个特解,那么所有的解可以表示为
    x = x 0 + ( b / d ) n , y = y 0 − ( a / d ) n , 其 中 n 是 整 数 。 x = x_0 + (b/d)n , y = y_0 - (a/d)n,其中n是整数。 x=x0+(b/d)n,y=y0(a/d)n,n

十.同余

  1. 定义:
    设 m 是 正 整 数 , 若 a 和 b 是 正 整 数 , 且 m ∣ ( a − b ) , 则 称 a 和 b 模 同 余 设m是正整数,若a和b是正整数,且 m|(a-b),则称a和b 模同余 mabmab),ab
    记 作 a ≡ b ( m o d m ) 记作 a \equiv b(mod m) ab(modm)
  2. 定理4.1:若 a 和 b 是整数 ,则
    a ≡ b ( m o d m ) 当 且 仅 当 存 在 整 数 k , 使 得 a = b + k m a \equiv b (mod m) 当且仅当存在整数 k,使得 a = b +km ab(modm)k,使a=b+km
  3. 定理4.3:若 a,b,c和m是整数,m>0
    a ≡ b ( m o d m ) 则 a \equiv b(mod m) 则 ab(modm)
    ( 1 ) a + c = b + c ( m o d m ) (1) a+c= b+ c(mod m) (1)a+c=b+c(modm)
    a − c = b − c ( m o d m ) a-c= b- c(mod m) ac=bc(modm)
    a c = b c ( m o d m ) ac= bc(mod m) ac=bc(modm)
  4. 定理4.4:若a,b,c和m是整数,m>0,d = (c,m),且有
    a c ≡ b c ( m o d m ) , 则 ac \equiv bc (mod m),则 acbc(modm),
    a ≡ b ( m o d m / d ) , 当 ( c , m ) = 1 时 , a ≡ b ( m o d m ) a \equiv b(mod m/d) ,当(c,m) = 1时,a \equiv b(mod m) ab(modm/d),(c,m)=1ab(modm)
  5. 定理4.7:若a,b,k和m是整数,k>0,m>0,且有
    a ≡ b ( m o d m ) , 则 a \equiv b (mod m),则 ab(modm),
    a k ≡ b k ( m o d m ) a^k \equiv b^k(mod m) akbk(modm)
  6. 结论:若s是偶数,则
    a 2 ≡ 0 ( m o d 4 ) , 奇 数 则 是 a 2 ≡ 1 ( m o d 4 ) a^2 \equiv 0(mod 4) ,奇数 则是a^2 \equiv 1(mod 4) a20(mod4),a21(mod4)
  7. 结论:
    1 3 + 2 3 + . . . + ( n − 1 ) 3 ≡ 0 ( m o d m ) 1^3+2^3+...+(n-1)^3 \equiv 0(mod m) 13+23+...+(n1)30(modm)

十一.线性同与方程

  1. 定义:x是未知整数,形如
    a x ≡ b ( m o d m ) 称 为 一 元 线 性 同 余 方 程 ax \equiv b(mod m) 称为一元线性同余方程 axb(modm)线
  2. 定理4.10:设a,b和m 是整数,m>0,(a,m) = d 若 d不等于b,则
    a x ≡ b ( m o d m ) 无 解 , 若 d ∣ b , z 则 a x ≡ b ( m o d m ) 恰 有 d 个 模 m 不 同 余 的 解 ax \equiv b(mod m)无解,若d|b ,z则 ax \equiv b(mod m)恰有d个模m不同余的解 axb(modm)db,zaxb(modm)dm
  3. 推论:若a和m>0互素,且b是整数,则线性同余方程
    a x ≡ b ( m o d m ) 恰 有 ( a , m ) = 1 个 模 m 不 同 余 的 解 。 ax \equiv b(mod m)恰有(a,m) = 1 个模m不同余的解。 axb(modm)(a,m)=1m
  4. 模的逆:给定整数a,有(a,m) = 1,称
    a x ≡ 1 ( m o d m ) 的 一 个 解 为 a 模 m 的 逆 ax \equiv 1(mod m)的一个解为a模m的逆 ax1(modm)am
  5. 定理4.11:设p是素数。正整数a是自身模p的逆,当且仅当
    a ≡ 1 ( m o d p ) 或 a ≡ − 1 ( m o d p ) a \equiv 1(mod p) 或 a \equiv -1(mod p) a1(modp)a1(modp)
  6. 中国剩余定理:设m1,m2,…,mr 是两两互素的正整数,则同余方程组
    x ≡ a 1 ( m o d m 1 ) , x ≡ a 2 ( m o d m 2 ) , . . . x ≡ a r ( m o d m r ) , 有 模 M = m 1 m 2 . . . m r 的 唯 一 解 。 x \equiv a_1(mod m_1),\\x \equiv a_2(mod m_2),\\...\\x \equiv a_r(mod m_r),\\有模M = m_1m_2...m_r 的唯一解。 xa1(modm1),xa2(modm2),...xar(modmr),M=m1m2...mr
  7. 引理4.2:若a和b是正整数,则
    2 a − 1 模 2 b − 1 的 最 小 正 剩 余 是 2 r − 1 , 其 中 r 是 a 模 b 的 最 小 正 剩 余 。 2^a-1 模2^b-1的最小正剩余是2^r-1,其中r是a模b的最小正剩余。 2a12b12r1,rab
  8. 引理4.3:若a和b是正整数,则
    2 a − 1 和 2 b − 1 的 最 大 公 约 数 是 2 … … ( a , b ) − 1 2^a-1 和2^b-1的最大公约数是2……{(a,b)}-1 2a12b12a,b)1
  9. 定理4.13:
    正 整 数 2 a − 1 和 2 b − 1 是 互 素 的 , 当 且 仅 当 a 与 b 是 互 素 的 。 正整数2^a-1 和2^b-1是互素的,当且仅当a与b是互素的。 2a12b1ab

十二.同余的应用

  1. 被2的冪整除检验:要判断一个整数n是否被2整除,只需检验它的最后一位数字能否被2整除。

  2. 被5的冪整除检验:要判断一个整数n是否被5整除,只需检验它的最后一位数字能否被5整除。

  3. 被3和9的冪整除检验:只需要检验n的各个位数之和是否能被3或9整除。

  4. 被11的冪整除检验:是对n的各位数字交替相加减,所得到的整数
    a 0 − a 1 + a 2 − . . . + ( − 1 ) k a k 能 被 11 整 除 a_0-a_1+a_2-...+(-1)^ka_k能被11整除 a0a1+a2...+(1)kak11

  5. 被7、11、13的冪整除检验 结论:从整数的最右端开始连续的三位数字组成一组,再按照原顺序构成新的三位数,最后将他们连续的交替相加减而得到的整数。从而只需检验交替相减后的结果是否能被7,11,或13整除。

十三.特殊的同余式

  1. 威尔逊定理:
    若 p 是 素 数 , 则 ( p − 1 ) ! ≡ − 1 ( m o d p ) 若p是素数,则(p-1)!\equiv-1(mod p) p(p1)!1(modp)
  2. 定理6.2:
    设 n 是 正 整 数 且 n ≥ 2 , 若 ( n − 1 ) ! ≡ − 1 ( m o d n ) , 则 n 是 素 数 设n是正整数且n\geq2 ,若(n-1)!\equiv -1(mod n),则n是素数 nn2,(n1)!1(modn),n
  3. 费马小定理:
    设 p 是 一 个 素 数 , a 是 一 个 正 整 数 且 p ∤ a , 则 a p − 1 ≡ ( m o d p ) 设p是一个素数,a是一个正整数且p\nmid a,则a^{p-1}\equiv (mod p) papa,ap1(modp)
  4. 定理6.4:
    设 p 是 素 数 且 a 是 一 个 正 整 数 , 则 a p ≡ a ( m o d p ) 设p是素数且a是一个正整数,则a^p\equiv a(mod p) paapa(modp)
  5. 定理6.5:
    设 p 是 素 数 , a 是 一 个 正 整 数 且 p ∤ a , 那 么 a p − 2 是 a 模 p 的 逆 设p是素数,a是一个正整数且p \nmid a,那么a^{p-2}是a模p的逆 p,apa,ap2ap
  6. 欧拉 ϕ \phi ϕ函数:
    定 义 为 不 超 过 n 且 与 n 互 素 的 正 整 数 的 个 数 定义为不超过n且与n互素的正整数的个数 nn
  7. 定义:
    KaTeX parse error: Can't use function '$' in math mode at position 12: 模n的既约剩余系是由$̲\phi$个整数构成的集合,集…
  8. 欧拉定理:设m是一个正整数,
    a 是 一 个 整 数 且 ( a , m ) = 1 , 那 么 a ϕ ( m ) ≡ 1 ( m o d m ) a是一个整数且(a,m)=1,那么a^{\phi(m)} \equiv 1(mod m) a(a,m)=1,aϕ(m)1(modm)

十三.完全数

  1. 两个函数:
    τ ( n ) : n 的 正 因 数 个 数 , σ ( n ) : n 的 正 因 数 之 和 \tau(n) :n的正因数个数, \sigma(n):n的正因数之和 τ(n)nσ(n)n
  2. 完全数定义:
    如 果 n 是 一 个 正 整 数 且 σ ( n ) = 2 n , 那 么 n 称 为 完 全 数 如果n是一个正整数且 \sigma(n)=2n,那么n称为完全数 nσ(n)=2nn
  3. 定理7.10:正整数m是一个偶完全数当且仅当
    n = 2 m − 1 ( 2 m − 1 ) , 其 中 m ≥ 2 是 使 得 2 m − 1 是 一 个 素 数 的 整 数 n=2^{m-1} (2^m-1),其中m\geq2是使得2^m-1是一个素数的整数 n=2m1(2m1),m2使2m1
  4. 定理7.11:
    如 果 m 是 一 个 正 整 数 且 2 m − 1 是 一 个 素 数 , 则 m 必 是 素 数 如果m是一个正整数且2^m-1是一个素数,则m必是素数 m2m1,m

十四.某些非线性丢番图方程

  1. 丢番图方程:如果对一个方程只求解它的整数(或有理数)解,我们便称该方程为丢番图方程。

毕达哥斯拉方程组

  1. 定义:
    满 足 x 2 + y 2 = z 2 的 正 整 数 三 元 组 被 称 为 毕 达 哥 斯 拉 三 元 组 满足x^2+y^2=z^2 \\的正整数三元组被称为毕达哥斯拉三元组 x2+y2=z2
  2. 定义:
    一 个 毕 达 哥 斯 拉 三 元 组 x , y , z 称 为 本 原 的 , 如 果 ( x , y , z ) = 1 一个毕达哥斯拉三元组x,y,z称为本原的,如果(x,y,z)=1 x,y,z(x,y,z)=1
  3. 引理:如果x,y,z为一个本原毕达哥斯拉三元组,则
    ( x , y ) = ( y , z ) = ( x , z ) = 1 (x,y)=(y,z)=(x,z)=1 (x,y)=(y,z)=(x,z)=1
  4. 引理 :若r,s,t为正整数,且(r,s)=1,rs= t 2 t^2 t2,则
    存 在 整 数 n , m , 使 得 r = m 2 , s = n 2 存在整数n,m,使得r=m^2,s=n^2 n,m使r=m2,s=n2

平方和

  1. 定理13.4:如果m和n都可以表示为两个整数的平方和,那么mn同样也可以表示为两个整数的平方和。

  2. 引理13.4:如果p是一个4m + 1 形式的素数,其中m是整数,那么也存在整数x和y,使得
    x 2 + y 2 = k p 对 于 p 的 正 整 数 k 成 立 。 x^2+y^2=kp对于p的正整数k成立。 x2+y2=kppk

  3. 定理13.6:如果正整数m和n都可以表示成四个整数的平方和,那么mn也可以。

  4. 定理13.7:正整数n可以表示成两个整数的平方和,当且仅当n的每一个4k + 3 形式的素因子在n的素幂分解形式中为偶次方。

  5. 定理13.5 :如果p是一个素数,那么就存在一个整数k,k<p使得
    k p = x 2 + y 2 + z 2 + w 2 存 在 正 整 数 解 。 kp=x^2+y^2+z^2+w^2\\存在正整数解。 kp=x2+y2+z2+w2

  6. 定理13.8 :如果p是一个素数,那么方程
    p = x 2 + y 2 + z 2 + w 2 存 在 正 整 数 解 。 p=x^2+y^2+z^2+w^2\\存在正整数解。 p=x2+y2+z2+w2

佩尔方程

后续会跟新。

.博主码字不易,希望对大家有帮助!

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
作者: 裴定一 / 祝跃飞 出版社: 科出版社 出版年: 2002年09月 页数: 233 页 定价: 19.00 装帧: 平装 ISBN: 9787030106834 内容简介 · · · · · · 本书论述了算法数论的基本内容,其中包括:连分数、代数数域、椭圆曲线、素性检验、大整数因子分解算法、椭圆曲线上的离散对数、超椭圆曲线。本书的特点是内容涉及面广,在有限的篇幅内,包含了必要的预备知识和数证明,尽可能形成一个完整的体系。并且本书的部分内容曾多次在中国科院研究生院信息安全国家重点实验室和广州大作为硕士研究生教材使用。 本书可作为信息安全、数论等专业的研究生教材及相关专业的研究人员、高等校的教师和高年级生的参考。 序 前言 第一章 整数的因子分解 1.1 唯一分解定理 1.2 辗转相除法(欧氏除法) 1.3 Mersenne素数和Fermat素数 1.4 整系数多项式 1.5 环Z[i]和Z[ω] 习题一 第二章 同余式 2.1 孙子定理 2.2 剩余类环 2.3 Euler函数ρ(m) 2.4 同余方程 2.5 原根 2.6 缩系的构造 习题二 第三章 二次剩余 3.1 定义及Euler判别条件 3.2 Legendre符号 3.3 Jacobi符号 习题三 第四章 特征 4.1 剩余系的表示 4.2 特征 4.3 原特征 4.4 特征和 4.5 Gauss和 习题四 第五章 连分数 5.1 简单连分数 5.2 用连分数表实数 5.3 最佳渐近分数 5.4 Legendre判别条件 习题五 第六章 代数数域 6.1 代数整数 6.2 Dedekind整环 6.3 阶的一些性质 第七章 椭圆曲线 7.1 椭圆曲线的群结构 7.2 除子类群 7.3 同种映射 7.4 Tate模和Weil对 7.5 有限域上的椭圆曲线 习题七 第八章 在密码中的一些应用 8.1 RSA公钥密码 8.2 Uiffie-Hellman体制 8.3 ElGamal算法 8.4 基于背包问题的公钥密码 8.5 秘密共享 第九章 素性检验 9.1 Fermat小定理及伪素数 9.2 强伪素数及Miller-Rabin检验 9.3 利用n-1的因子分解的素性检验 9.4 利用n+1的因子分解的素性检验 9.5 分圆环素性检验 9.6 基于椭圆曲线的素性检验 第十章 大整数因子分解算法 10.1 连分数因子分解算法 10.2 二次筛法 10.3 Pollard的P-1因子分解算法 10.4 椭圆曲线因子分解算法 10.5 数域筛法 习题十 第十一章 椭圆曲线上的离散对数 11.1 椭圆曲线公钥密码 11.2 小步-大步法 11.3 家袋鼠和野袋鼠 11.4 MOV约化 11.5 FR约化 11.6 SSSA约化 11.7 有限域上离散对数的计算 第十二章 超椭圆曲线 12.1 超椭圆曲线的Jacobian 12.2 虚二次代数函数域 12.3 基于超椭圆曲线的公钥密码 附录 一些常用算法 A.1 不可约多项式的判别 A.2 有限域中平方根的求解 A.3 有限域上的分解 A.4 Hensel引理 A.5 格 A.6 Z[x]中多项式的分解 参考文献
内容简介: 本书论述了算法数论的基本内容,其中包括:连分数、代数数域、椭圆曲线、素性检验、大整数因子分解算法、椭圆曲线上的离散对数、超椭圆曲线。本书的特点是内容涉及面广,在有限的篇幅内,包含了必要的预备知识和数证明,尽可能形成一个完整的体系。并且本书的部分内容曾多次在中国科院研究生院信息安全国家重点实验室和广州大作为硕士研究生教材使用。本书可作为信息安全、数论等专业的研究生教材及相关专业的研究人员、高等校的教师和高年级生的参考。 目录: 序 前言 第一章 整数的因子分解 1.1 唯一分解定理 1.2 辗转相除法(欧氏除法) 1.3 Mersenne素数和Fermat素数 1.4 整系数多项式 1.5 环Z和Z[ω] 习题一 第二章 同余式 2.1 孙子定理 2.2 剩余类环 2.3 Euler函数ρ(m) 2.4 同余方程 2.5 原根 2.6 缩系的构造 习题二 第三章 二次剩余 3.1 定义及Euler判别条件 3.2 Legendre符号 3.3 Jacobi符号 习题三 第四章 特征 4.1 剩余系的表示 4.2 特征 4.3 原特征 4.4 特征和 4.5 Gauss和 习题四 第五章 连分数 5.1 简单连分数 5.2 用连分数表实数 5.3 最佳渐近分数 5.4 Legendre判别条件 习题五 第六章 代数数域 6.1 代数整数 6.2 Dedekind整环 6.3 阶的一些性质 第七章 椭圆曲线 7.1 椭圆曲线的群结构 7.2 除子类群 7.3 同种映射 7.4 Tate模和Weil对 7.5 有限域上的椭圆曲线 习题七 第八章 在密码中的一些应用 8.1 RSA公钥密码 8.2 Uiffie-Hellman体制 8.3 ElGamal算法 8.4 基于背包问题的公钥密码 8.5 秘密共享 第九章 素性检验 9.1 Fermat小定理及伪素数 9.2 强伪素数及Miller-Rabin检验 9.3 利用n-1的因子分解的素性检验 9.4 利用n+1的因子分解的素性检验 9.5 分圆环素性检验 9.6 基于椭圆曲线的素性检验 第十章 大整数因子分解算法 10.1 连分数因子分解算法 10.2 二次筛法 10.3 Pollard的P-1因子分解算法 10.4 椭圆曲线因子分解算法 10.5 数域筛法 习题十 第十一章 椭圆曲线上的离散对数 11.1 椭圆曲线公钥密码 11.2 小步-大步法 11.3 家袋鼠和野袋鼠 11.4 MOV约化 11.5 FR约化 11.6 SSSA约化 11.7 有限域上离散对数的计算 第十二章 超椭圆曲线 12.1 超椭圆曲线的Jacobian 12.2 虚二次代数函数域 12.3 基于超椭圆曲线的公钥密码 附录 一些常用算法 A.1 不可约多项式的判别 A.2 有限域中平方根的求解 A.3 有限域上的分解 A.4 Hensel引理 A.5 格 A.6 Z[x]中多项式的分解 参考文献 免责申明:此书是我在网络上获取的,希望对大家有用。资源版权归作者及其公司所有,如果你喜欢,请购买正版。~~~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落春只在无意间

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值