【算法合集】学习算法第二天(二分与排序篇)

本文介绍了四种不同的算法问题,包括无重复数字的升序数组的二分查找,二维数组中的查找,寻找峰值以及数组中的逆序对。提供了详细的题解代码,并强调了算法在编程学习和面试中的重要性。推荐使用牛客网进行刷题和面试准备。
摘要由CSDN通过智能技术生成

✅🎡个人主页:程序猿追

✅🎡系列专栏:算法合集

✅🎡目前状态:创建Java学习之路(零基础到就业实战)系列,目前更新到JAVAWEB开发

✅🎡作者简介:大家好,我是程序猿追,全栈领域新星创作者,算法爱好者,常在作者周榜排名前30,某不知名的 ACMer

✅🎡推荐一款刷题面试找工作三不误的网站——牛客网

✅🎡个人名言:不积跬步无以至千里,趁年轻,使劲拼,给未来的自己一个交代!

哈喽,大家好,我是程序猿追,通过上一篇算法文的私信,有小伙伴留言说,什么时候更新呀?这不?今天它就来了。

目录

二分查找-I

题解代码

二维数组中的查找

题解代码

寻找峰值

题解代码

数组中的逆序对

题解代码


二分查找-I

描述

请实现无重复数字的升序数组的二分查找

给定一个 元素升序的、无重复数字的整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标(下标从 0 开始),否则返回 -1

数据范围:0≤len(nums)≤2×105 , 数组中任意值满足 ∣val∣≤109

进阶:时间复杂度 O(logn) ,空间复杂度 O(1)

示例1

输入:

[-1,0,3,4,6,10,13,14],13

返回值:

6

说明:

13 出现在nums中并且下标为 6     

示例2

输入:

[],3

返回值:

-1

说明:

nums为空,返回-1     

示例3

输入:

[-1,0,3,4,6,10,13,14],2

返回值:

-1

说明:

2 不存在nums中因此返回 -1     

题解代码

import java.util.*;
public class Solution {
    public int search (int[] nums, int target) {
        int l = 0;
        int r = nums.length - 1;
        //从数组首尾开始,直到二者相遇 fast-template
        while(l <= r){
            //每次检查中点的值
            int m = (l + r) / 2;
            if(nums[m] == target)
                return m;
            //进入左的区间
            if(nums[m] > target)
                r = m - 1;
            //进入右区间
            else
                l = m + 1;
        }
        //未找到
        return -1;}
}

二维数组中的查找

描述

在一个二维数组array中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

[

[1,2,8,9],
[2,4,9,12],
[4,7,10,13],
[6,8,11,15]

]

给定 target = 7,返回 true。

给定 target = 3,返回 false。

数据范围:矩阵的长宽满足 0≤n,m≤500 , 矩阵中的值满足 0≤val≤109
进阶:空间复杂度 O(1),时间复杂度 O(n+m)

示例1

输入:

7,[[1,2,8,9],[2,4,9,12],[4,7,10,13],[6,8,11,15]]

复制返回值:

true

说明:

存在7,返回true    

示例2

输入:

1,[[2]]

返回值:

false

示例3

输入:

3,[[1,2,8,9],[2,4,9,12],[4,7,10,13],[6,8,11,15]]

返回值:

false

说明:

不存在3,返回false    

题解代码

public class Solution {
    public boolean Find(int target, int [][] array) { 
        //优先判断特殊 fast-template
        if(array.length == 0)
            return false;
        int n = array.length;
        if(array[0].length == 0)
            return false;
        int m = array[0].length;
        //从最左下角的元素开始往左或往上
        for(int i = n - 1, j = 0; i >= 0 && j < m; ){
            //元素较大,往上走
            if(array[i][j] > target)
                i--;
            //元素较小,往右走
            else if(array[i][j] < target)
                j++;
            else
                return true;
        }
        return false;}
}

寻找峰值

描述

给定一个长度为n的数组nums,请你找到峰值并返回其索引。数组可能包含多个峰值,在这种情况下,返回任何一个所在位置即可。

1.峰值元素是指其值严格大于左右相邻值的元素。严格大于即不能有等于

2.假设 nums[-1] = nums[n] = −∞

3.对于所有有效的 i 都有 nums[i] != nums[i + 1]

4.你可以使用O(logN)的时间复杂度实现此问题吗?

数据范围:

1≤nums.length≤2×10^5 

-2^31<=nums[i]<=2^31 − 1

如输入[2,4,1,2,7,8,4]时,会形成两个山峰,一个是索引为1,峰值为4的山峰,另一个是索引为5,峰值为8的山峰,如下图所示:

示例1

输入:

[2,4,1,2,7,8,4]

返回值:

1

说明:

4和8都是峰值元素,返回4的索引1或者8的索引5都可以     

示例2

输入:

[1,2,3,1]

返回值:

2

说明:

3 是峰值元素,返回其索引 2     

题解代码

import java.util.*;
public class Solution {
    public int findPeakElement (int[] nums) { 
        int left = 0;
        int right = nums.length - 1;
        //二分法 fast-template
        while(left < right){
            int mid = (left + right) / 2;
            //右边是往下,不一定有坡峰
            if(nums[mid] > nums[mid + 1])
                right = mid;
            //右边是往上,一定能找到波峰
            else
                left = mid + 1;
        }
        //其中一个波峰
        return right;}
}

数组中的逆序对

描述

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P mod 1000000007


数据范围:  对于 50% 的数据, size≤10^6
对于 100% 的数据, size≤105

数组中所有数字的值满足 0≤val≤1000000
 

要求:空间复杂度 O(n),时间复杂度 O(nlogn)

输入描述:

题目保证输入的数组中没有的相同的数字

示例1

输入:

[1,2,3,4,5,6,7,0]

返回值:

7

示例2

输入:

[1,2,3]

返回值:

0

题解代码

public class Solution {
    public int mod = 1000000007;
    public int mergeSort(int left, int right, int [] data, int [] temp){
        // 停止划分 fast-template
        if (left >= right)
            return 0;
        //取中间
        int mid = (left + right) / 2;
        //左右划分
        int res = mergeSort(left, mid, data, temp) + mergeSort(mid + 1, right, data, temp);
        //防止溢出
        res %= mod;
        int i = left, j = mid + 1;
        for (int k = left; k <= right; k++)
            temp[k] = data[k];
        for (int k = left; k <= right; k++) {
            if (i == mid + 1)
                data[k] = temp[j++];
            else if (j == right + 1 || temp[i] <= temp[j])
                data[k] = temp[i++];
            //左边比右边大,答案增加
            else {
                data[k] = temp[j++];
                // 统计逆序对
                res += mid - i + 1;
            }
        }
        return res % mod;
    }
    public int InversePairs(int [] array) {
        int n = array.length;
        int[] res = new int[n];
        return mergeSort(0, n - 1, array, res);}
}

算法对程序员来说及其重要,语言和开发平台不断变化,但是万变不离其宗的是那些算法和理论,依稀记得我那个玩的很好的一个学长(在大二就拿到了 offer),他告诉我想找一个好的工作,那刷题一定是必不可少的

现在算法刷题平台还是蛮多的,给大家介绍一个我认为与大厂关联最深的平台——牛客网

评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿追

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值