- 博客(258)
- 收藏
- 关注
原创 8.2 NLP主流任务和快速实践——NLP主流任务和快速实践
自然语言处理(natural language processing,简称NLP)是计算机科学和人工智能领域重要的方向,自2018年BERT预训练模型被提出以来,自然语言处理领域的各项任务指标不断被刷新,甚至在一些任务上已经超过了人类的基准值,例如阅读理解评测数据SQuAD 1.0。预训练模型基于新的自然语言处理任务范式:预训练+微调,极大推动了自然语言处理领域的发展。基于这个新的训练范式,预训练模型可以被广泛应用于NLP领域的各项任务中。本节将讲解任务和。
2024-11-07 11:26:26 1198 3
原创 预训练语言模型BERT——PaddleNLP中的预训练模型
与此同时,为方便用户使用,PaddleNLP提供了常用的预训练模型及其相应权重,包括从 huggingface.co 直接转换的模型权重和百度自研模型权重。目前共包含了40多个主流预训练模型,500多个模型权重。Sequence Classification: 针对整个文本序列进行分类,最典型的任务是文本分类Token Classification:针对序列中每个token进行分类,最典型的任务是命名实体识别。
2024-11-07 11:23:10 1232
原创 8.1.3预训练语言模型BERT——预训练任务示例
因此模型蒸馏方向的模型或技术被提出来,其主要通过将性能好的大模型作为Teacher模型,将运行效率高的小模型作为Student模型,通过知识蒸馏的方式,将Teacher模型的知识逐步迁移至Student模型中。一样的预训练模型,其主要采用预训练+微调的策略进行使用,预训练主要是帮助BERT模型学习语言知识,在预训练完成后,可基于预训练后的模型,对下游任务进行微调训练,往往能够在下游任务中获得比较好的效果。基于预训练后的BERT模型进行下游任务微调,能够帮助下游任务获得更好的效果。里面,导致上下文碎片化。
2024-10-24 09:21:07 991
原创 第八章自然语言处理任务的新范式:预训练语言模型——8.1BERT
自此,不管是学术界,还是工业界均掀起了基于Transformer的预训练模型研究和应用的热潮,并且逐渐从NLP延伸到CV、语音等多项领域。,将会获得比较好的一个分类结果,直观地想,预训练模型已经懂得了语言的知识,在这些知识基础上去学习文本分类任务将会事半功倍。监督(weak-supervised)的方式训练模型,经过大规模语料的”洗礼”,预训练模型能够学习到语言相关的知识,比如句法,语法知识等等。上进行预训练,学到了很好的语言知识,能够更好地进行词向量表示,当前已经成为主流的文本表示模型。
2024-10-24 09:19:41 1362
原创 828华为云征文 | Flexus X实例评测与应用体验:高性能与经济性的完美结合 带你部署Grafana
华为云Flexus X实例基于擎天QingTian架构和瑶光云脑技术,结合大模型调度和智能加速算法,旨在突破传统云服务器的局限。与传统云服务提供商的固定规格不同,Flexus X实例允许用户自定义CPU和内存规格,实现1:3、2:5等灵活配比。这样的设计能显著提高资源利用效率,减少资源浪费。
2024-09-02 14:00:34 1313 2
原创 828华为云征文 | Flexus X实例评测使用体验——手把手带你体验瑞吉外卖下载与部署
瑞吉外卖 对象转换器 公共字段自动填充 文件上传/下载 阿里云短信_nginx 自动填充识别-CSDN博客因为本篇主要测试服务器,如果不了解的朋友可以看我的这篇博客,就不再一一赘述!
2024-09-02 13:53:03 866
原创 828华为云征文 | Flexus X强大性能与高可靠性使用体验——手把手带你部署es docker rabbitmq
随着云计算技术的发展,越来越多的企业和个人开始将自己的业务迁移到云上。在选择云服务提供商时,稳定性、性能和可靠性是最重要的考虑因素之一。在这方面,Flexus云服务器X无疑是一个令人印象深刻的选择。Flexus云服务器X是华为云服务器系列中的高性能型号,专为那些对计算资源有高要求的企业和个人用户而设计。它能够提供强大的计算能力和卓越的性能,为用户的应用和服务提供稳定可靠的基础设施支持。首先,Flexus云服务器X配备了强大的处理器和内存组合,以应对各种复杂的计算任务。它采用最新的英特尔至强处理器。
2024-09-02 09:00:00 1260
原创 某猪24校招-工程方向笔试
现有一个有序表( 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 ),当二分查找值为 60 的元素时,它将依次与表中哪些元素比较?当该进程的访问页面顺序是 3、1、4、2、5、3、1、6、2、4、5、3、1,进程运行过程中会发生多少次缺页?前面已经有8(0~7)行,即8*8个元素,再加【4】第5个元素,前面一共64+4=68;为 0~7,从首地址 180 开始连续按行优先存放,在这种情况下,元素。中,假设每个数组元素的长度为 3 个存储单元,行下标。
2024-08-04 16:41:41 967 2
原创 2024年睿抗机器人开发者大赛(RAICOM)CAIP-编程技能赛-本科组国赛
该比赛属于个人赛,而且是类似ioi赛制,就是每一道题目提交之后可以看到自己题目的分数,而且可以多次提交都有效的取最高的分数(蓝桥杯只有最后一次的提交是有效的而且当场看不到分数),那么就可以疯狂提交,最后取最高分。该比赛分为省赛和国赛,先进行省赛,决胜出一二等奖晋级国赛,省赛的比例为:10%,15%,20%,对应一等奖、二等奖、三等奖,国赛的比例为:10%,15%,20%分别对应一等奖、二等奖、三等奖。比赛时间:2小时7月15日下午14:00-16:00比赛平台:OMS(需要提前下载并调试)比赛场地:
2024-08-04 16:34:45 1720 6
原创 比赛须知【2024 年睿抗机器人开发者大赛CAIP-编程技能赛(国赛)】
8.禁止打开任何纸质资料和事先存储在机器上的电子资料。12.严禁在检查过程中擅自关闭摄像头、监考客户端。1.开考 15 分钟内禁止退场。7.禁止使用任何形式的人工智能(AI)辅助工具。2.禁止使用双屏,无论第二屏幕是否开启、4.比赛过程中禁止触碰 USB 接口。5.禁止以任何形式访问任何非指走网站。10.禁止与监考老师以外的任何人交谈。违反上述禁则任何一条,都将以作弊论处。6.禁止使用任何形式的即时通讯工具。11、禁止拒绝监考老师的检查要求,3禁止佩戴耳机等电子设备。禁止使用任何电子翻译功能。
2024-07-31 17:17:31 1025 9
原创 7.2 Transformer:具有里程碑意义的新模型——自注意力模型
自此,不管是学术界,还是工业界均掀起了基于Transformer的预训练模型研究和应用的热潮,并且逐渐从NLP领域延伸到CV、语音等多项领域。Transformer模型是一个具有里程碑意义的模型,它的提出催生了众多基于Transformer网络结构的模型,特别是在2018年预训练模型BERT的提出,其在多项NLP任务上均取得了。如在阅读理解任务中,一篇文章最后段落的理解,可能依赖对于该文章开篇的典故的理解,这种与全局信息的关联,显然不是循环神经网络能够捕捉的。基于上面朴素的想法,自注意力模型的网络结构如。
2024-07-22 19:19:41 1551 2
原创 7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
在讲解卷积神经网络的的章节,我们详细列出了每一种神经网络使用基础算子拼装的详细网络配置,但实际上对于一些常用的网络结构,飞桨框架提供了现成的中高层函数支持。下面用于情感分析的长短时记忆模型就使用API实现。如果读者对使用基础算子拼装LSTM的内容感兴趣,可以查阅类的源代码。
2024-07-22 19:18:05 1174 1
原创 7.1.3、使用飞桨实现基于LSTM的情感分析模型
接下来让我们看看如何使用飞桨实现一个基于长短时记忆网络的情感分析模型。在飞桨中,不同深度学习模型的训练过程基本一致,流程如下: 数据处理 :选择需要使用的数据,并做好必要的预处理工作。 网络定义 :使用飞桨定义好网络结构,包括输入层,中间层,输出层,损失函数和优化算法。 模型训练 :将准备好的训练集数据送入神经网络进行学习,并观察学习的过程是否正常,如损失函数值是否在降低,也可以打印一些中间步骤的结果出来等。 模型评估 :使用测试集数据测试训练好的神经网络,看看训练效果如何
2024-07-20 11:00:00 1531
原创 7.1 NLP经典神经网络 RNN LSTM
如何设计神经网络的记忆功能呢?我们先了解下RNN网络是如何实现具备记忆功能的。RNN相当于将神经网络单元进行了横向连接,处理前一部分输入的RNN单元不仅有正常的模型输出,还会输出“记忆”传递到下一个RNN单元。而处于后一部分的RNN单元,不仅仅有来自于任务数据的输入,同时会接收从前一个RNN单元传递过来的记忆输入,这样就使得整个神经网络具备了“记忆”能力。但是RNN网络只是初步实现了“记忆”功能,在此基础上科学家们又发明了一些RNN的变体,来加强网络的记忆能力。但RNN对“记忆”能力的设计是比较粗糙的,
2024-07-20 10:15:00 698
原创 6.2.3. 使用飞桨实现Skip-gram
定义skip-gram的网络结构,用于模型训练。在飞桨动态图中,对于任意网络,都需要定义一个继承自的类来搭建网络结构、参数等数据的声明。同时需要在forward函数中定义网络的计算逻辑。值得注意的是,我们仅需要定义网络的前向计算逻辑,飞桨会自动完成神经网络的后向计算在skip-gram的网络结构中,使用的最关键的API是函数,可以用其实现Embedding的网络层。
2024-07-19 10:45:00 694
原创 6.2词向量:迈向NLP领域的第1步台阶
在自然语言处理任务中,词向量(Word Embedding)是表示自然语言里单词的一种方法,即把每个词都表示为一个N维空间内的点,即一个高维空间内的向量。通过这种方法,实现把自然语言计算转换为向量计算。如图1所示的词向量计算任务中,先把每个词(如queen,king等)转换成一个高维空间的向量,这些向量在一定意义上可以代表这个词的语义信息。再通过计算这些向量之间的距离,就可以计算出词语之间的关联关系,从而达到让计算机像计算数值一样去计算自然语言的目的。图1:词向量计算示意图如何把词转换为向量。
2024-07-19 10:15:00 850
原创 6.1 自然语言处理综述
自然语言处理(Natural Language Processing,简称NLP)被誉为人工智能皇冠上的明珠,是计算机科学和人工智能领域的一个重要方向。它主要研究人与计算机之间,使用的各种理论和方法。简单来说,计算机以用户的自然语言数据作为输入,在其内部通过定义的算法进行加工、计算等系列操作后(用以解),再返回用户所期望的结果,如所示。图1:自然语言处理示意图自然语言处理是一门于一体的科学。
2024-07-18 11:00:00 783 1
原创 5.3 目标检测YOLOv3实战:叶病虫害检测——损失函数、模型训练
本章系统化的介绍了计算机视觉的各种网络结构和发展历程,并以图像分类和目标检测两个任务为例,展示了ResNet和YOLOv3等算法的实现。期望读者不仅掌握了计算机视觉模型搭建方法,也能够对提取视觉特征的方法有更深入的认知。
2024-07-18 10:30:00 901
原创 5.3 目标检测YOLOv3实战:叶病虫害检测
在本课程中,将使用百度与林业大学合作开发的林业病虫害防治项目中用到昆虫数据集。提供了2183张图片,其中训练集1693张,验证集245,测试集245张。包含7种昆虫,分别是Boerner、Leconte、Linnaeus、acuminatus、armandi、coleoptera和linnaeus。包含了图片和标注。
2024-07-17 11:00:00 1599 1
原创 5.2.3 检测头设计(计算预测框位置和类别)
将P0[t,0:12,i,j]与输入的第t张图片上小方块区域(i,j)第1个预测框所需要的12个预测值对应,P0[t,12:24,i,j]与输入的第t张图片上小方块区域(i,j)第2个预测框所需要的12个预测值对应,P0[t,24:36,i,j]与输入的第t张图片上小方块区域(i,j)第3个预测框所需要的12个预测值对应。P0[t,0:4,i,j]与输入的第tt张图片上小方块区域(i,j)第1个预测框的位置对应,P0[t,12:16,i,j]与第2个预测框的位置对应,依此类推,则使用下面的程序可以。
2024-07-17 10:30:00 1072
原创 5.2.1 Backbone(特征提取) 5.2.2 Neck(多尺度检测)
上面这段示例代码,指定输入数据的形状是(1,3,640,640)(1, 3, 640, 640),则3个层级的输出特征图的形状分别是C0(1,1024,20,20)C0 (1, 1024, 20, 20),C1(1,512,40,40)C1 (1, 512, 40, 40)和C2(1,256,80,80)C2 (1, 256, 80, 80)。如果只在在特征图P0的基础上进行的,它的步幅stride=32。,得到的新特征图既能包含丰富的语义信息,又具有较多的像素点,能够描述更加精细的结构。
2024-07-16 10:33:04 823
原创 5.2 单阶段目标检测模型YOLOv3
其中跟真实框IoU最大的是锚框A_3,形状是(373,326),将它所对应的预测框的objectness标签设置为1,其所包括的物体类别就是真实框里面的物体所属类别。,每个锚框会有一个跟它对应的预测框,我们需要确定上面计算式中的t_x, t_y, t_w, t_h,从而计算出与锚框对应的预测框的位置和形状。,P_1, P_2,... , P_C则是锚框包含的物体属于每个类别的概率。为了回答问题,只需要将上面预测框坐标中的b_x, b_y, b_h, b_w设置为真实框的位置,即可求解出t的数值。
2024-07-16 10:00:00 875
原创 2024年睿抗机器人开发者大赛(RAICOM)CAIP-编程技能赛-本科组省赛_题解
一、算法的概念算法是计算机处理信息的本质,因为计算机本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务。算法是独立存在的一种解决问题的方法和思想。对于算法而言,实现的语言并不重要,重要的是思想。算法可以有不同的语言描述实现版本二、算法的五大特性1、输入:算法具有0个或多个输入2、输出:算法至少有1个或多个输出3、有穷性:算法在有限的步骤之后会自动结束而不会无线循环,并且每一个步骤可以在可接受的时间内完成4、确定性:算法中的每一步都有确定的含义,不会出现二义性5、可行性:算法的每一步
2024-07-15 16:51:53 6238 17
原创 5.1.2.3 目标检测基本概念和YOLOv3设计思想——交并比 NMS
假设使用模型对图片进行预测,一共输出了11个预测框及其得分,在图上画出预测框。在每个人像周围,都出现了多个预测框,需要消除冗余的预测框以得到最终的预测结果。下图“交集”中青色区域是两个框的重合面积,图“并集”中蓝色区域是两个框的相并面积。比如在上面的程序中,boxes里面一共对应11个预测框,scores给出了它们预测"人"这一类别的得分。两个矩形框之间的相对位置关系,除了上面的示意图之外,还有哪些可能,上面的公式能否覆盖所有的情形?两个框可以看成是两个像素的集合,它们的交并比等于两个框。
2024-07-15 10:45:00 982
原创 5.1 目标检测基本概念和YOLOv3设计思想
穷举法也许能得到正确的预测结果,但其计算量也是非常巨大的,其所生成的总候选区域数目约为W^2*H^2/4,假设H=W=100,总数将会达到2.5×10^7个,如此多的候选区域使得这种方法几乎没有什么实用性。在上一节中我们学习了图像分类处理基本流程,先使用卷积神经网络提取图像特征,然后再用这些特征预测分类概率,最后选出概率最大的类别,即为当前图片的类别,流程如。不同的模型往往有着不同的生成锚框的方式,在后面的内容中,会详细介绍YOLOv3算法里面产生锚框的规则,理解了它的设计方案,也很容易类推到其它模型上。
2024-07-15 10:00:00 1339
原创 4.3.2 图像分类ResNet实战:眼疾识别——模型构建
在这一节里,我们通过ResNet模型实现眼疾识别,在验证集上的预测精度在95%左右,通过这个案例熟悉了基础的视觉任务构建流程。如果读者有兴趣的话,可以进一步调整学习率和训练轮数等超参数,观察是否能够得到更高的精度。上一节定义好已经了解了ResNet模型结构,本节直接使用飞桨高层API中的Resnet50进行图像分类实验。用Runner在训练集上训练5个epoch,并保存准确率最高的模型作为最佳模型。飞桨高层API中都为大家提供了实现好交叉熵损失函数,代码如下所示。,观察模型在评估集上的准确率。
2024-07-13 11:00:00 1286
原创 4.3 图像分类ResNet实战:眼疾识别
如今近视已经成为困扰人们健康的一项全球性负担,在近视人群中,有超过35%的人患有重度近视。近视会拉长眼睛的光轴,也可能引起视网膜或者络网膜的病变。随着近视度数的不断加深,高度近视有可能引发病理性病变,这将会导致以下几种症状:视网膜或者络网膜发生退化、视盘区域萎缩、漆裂样纹损害、Fuchs斑等。因此,及早发现近视患者眼睛的病变并采取治疗,显得非常重要。
2024-07-13 10:00:00 975
原创 4.2 图像分类基本概念和ResNet设计思想
通俗的比喻,在火热的电视节目《王牌对王牌》上有一个“传声筒”的游戏,排在队首的嘉宾把看到的影视片段表演给后面一个嘉宾看,经过四五个嘉宾后,最后一个嘉宾如果能表演出更多原剧的内容,就能取得高分。图像分类在许多领域都有着广泛的应用,如:安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索、相册自动归类、商品识别、医学领域的图像识别等。,然后跟输入图片进行短接,如果残差块中第三次卷积输出特征图的形状与输入不一致,则对输入图片使用1 x 1卷积,将其输出形状调整成一致。
2024-07-12 11:30:00 1011
原创 一文搞懂 卷积神经网络 批归一化 丢弃法
《零基础实践深度学习》(第1版)2020年正式上线,深受开发者和高校师生追捧,累积学习人数超过9万人。本课程是它的升级版,结合深度学习技术的发展、学员反馈,并结合近两年AI产业应用经验,进行了全面更新和优化。如:• 模型算法方面 :新增CV、NLP和推荐领域经典模型和算法介绍,以及相应的代码实现,如Transformer、BERT等。 • 产业应用方面 :新增AI产业应用方法论和使用工具介绍,如芯片选型原则、AI推理部署套件FastDeploy、飞桨产业范例库等。 • 学员反馈方面 :课程第1章增加P
2024-07-12 10:00:00 1451
原创 一文搞懂 卷积神经网络 卷积算子应用举例 池化 激活函数
《零基础实践深度学习》(第1版)2020年正式上线,深受开发者和高校师生追捧,累积学习人数超过9万人。本课程是它的升级版,结合深度学习技术的发展、学员反馈,并结合近两年AI产业应用经验,进行了全面更新和优化。如:• 模型算法方面 :新增CV、NLP和推荐领域经典模型和算法介绍,以及相应的代码实现,如Transformer、BERT等。 • 产业应用方面 :新增AI产业应用方法论和使用工具介绍,如芯片选型原则、AI推理部署套件FastDeploy、飞桨产业范例库等。 • 学员反馈方面 :课程第1章增加P
2024-07-11 12:00:00 954
原创 4.1卷积神经网络
《零基础实践深度学习》(第1版)2020年正式上线,深受开发者和高校师生追捧,累积学习人数超过9万人。本课程是它的升级版,结合深度学习技术的发展、学员反馈,并结合近两年AI产业应用经验,进行了全面更新和优化。如:• 模型算法方面 :新增CV、NLP和推荐领域经典模型和算法介绍,以及相应的代码实现,如Transformer、BERT等。 • 产业应用方面 :新增AI产业应用方法论和使用工具介绍,如芯片选型原则、AI推理部署套件FastDeploy、飞桨产业范例库等。 • 学员反馈方面 :课程第1章增加P
2024-07-11 10:00:00 1192
原创 第3章 计算机视觉基础
《零基础实践深度学习》(第1版)2020年正式上线,深受开发者和高校师生追捧,累积学习人数超过9万人。本课程是它的升级版,结合深度学习技术的发展、学员反馈,并结合近两年AI产业应用经验,进行了全面更新和优化。如:• 模型算法方面 :新增CV、NLP和推荐领域经典模型和算法介绍,以及相应的代码实现,如Transformer、BERT等。 • 产业应用方面 :新增AI产业应用方法论和使用工具介绍,如芯片选型原则、AI推理部署套件FastDeploy、飞桨产业范例库等。 • 学员反馈方面 :课程第1章增加P
2024-07-10 12:00:00 1627
原创 2.10 动静转换
《零基础实践深度学习》(第1版)2020年正式上线,深受开发者和高校师生追捧,累积学习人数超过9万人。本课程是它的升级版,结合深度学习技术的发展、学员反馈,并结合近两年AI产业应用经验,进行了全面更新和优化。如:• 模型算法方面 :新增CV、NLP和推荐领域经典模型和算法介绍,以及相应的代码实现,如Transformer、BERT等。 • 产业应用方面 :新增AI产业应用方法论和使用工具介绍,如芯片选型原则、AI推理部署套件FastDeploy、飞桨产业范例库等。 • 学员反馈方面 :课程第1章增加P
2024-07-10 10:00:00 945
原创 2.9 手写数字识别之恢复训练
《零基础实践深度学习》(第1版)2020年正式上线,深受开发者和高校师生追捧,累积学习人数超过9万人。本课程是它的升级版,结合深度学习技术的发展、学员反馈,并结合近两年AI产业应用经验,进行了全面更新和优化。如:• 模型算法方面 :新增CV、NLP和推荐领域经典模型和算法介绍,以及相应的代码实现,如Transformer、BERT等。 • 产业应用方面 :新增AI产业应用方法论和使用工具介绍,如芯片选型原则、AI推理部署套件FastDeploy、飞桨产业范例库等。 • 学员反馈方面 :课程第1章增加P
2024-07-09 12:00:00 915
原创 2.8.4 加入正则化项,避免模型过拟合
《零基础实践深度学习》(第1版)2020年正式上线,深受开发者和高校师生追捧,累积学习人数超过9万人。本课程是它的升级版,结合深度学习技术的发展、学员反馈,并结合近两年AI产业应用经验,进行了全面更新和优化。如:• 模型算法方面 :新增CV、NLP和推荐领域经典模型和算法介绍,以及相应的代码实现,如Transformer、BERT等。 • 产业应用方面 :新增AI产业应用方法论和使用工具介绍,如芯片选型原则、AI推理部署套件FastDeploy、飞桨产业范例库等。 • 学员反馈方面 :课程第1章增加P
2024-07-09 10:30:00 1187
原创 2.8 手写数字识别之训练调试与优化
《零基础实践深度学习》(第1版)2020年正式上线,深受开发者和高校师生追捧,累积学习人数超过9万人。本课程是它的升级版,结合深度学习技术的发展、学员反馈,并结合近两年AI产业应用经验,进行了全面更新和优化。如:• 模型算法方面 :新增CV、NLP和推荐领域经典模型和算法介绍,以及相应的代码实现,如Transformer、BERT等。 • 产业应用方面 :新增AI产业应用方法论和使用工具介绍,如芯片选型原则、AI推理部署套件FastDeploy、飞桨产业范例库等。 • 学员反馈方面 :课程第1章增加P
2024-07-08 12:15:00 1285
原创 2.7 手写数字识别之资源配置
《零基础实践深度学习》(第1版)2020年正式上线,深受开发者和高校师生追捧,累积学习人数超过9万人。本课程是它的升级版,结合深度学习技术的发展、学员反馈,并结合近两年AI产业应用经验,进行了全面更新和优化。如:• 模型算法方面 :新增CV、NLP和推荐领域经典模型和算法介绍,以及相应的代码实现,如Transformer、BERT等。 • 产业应用方面 :新增AI产业应用方法论和使用工具介绍,如芯片选型原则、AI推理部署套件FastDeploy、飞桨产业范例库等。 • 学员反馈方面 :课程第1章增加P
2024-07-08 11:00:00 821
原创 2.6 手写数字识别之优化算法
《零基础实践深度学习》(第1版)2020年正式上线,深受开发者和高校师生追捧,累积学习人数超过9万人。本课程是它的升级版,结合深度学习技术的发展、学员反馈,并结合近两年AI产业应用经验,进行了全面更新和优化。如:• 模型算法方面 :新增CV、NLP和推荐领域经典模型和算法介绍,以及相应的代码实现,如Transformer、BERT等。 • 产业应用方面 :新增AI产业应用方法论和使用工具介绍,如芯片选型原则、AI推理部署套件FastDeploy、飞桨产业范例库等。 • 学员反馈方面 :课程第1章增加P
2024-07-07 21:16:21 1370
原创 黑马商城 Elasticsearch从入门到部署 RestClient操作文档
当我们要导入商品数据时,由于商品数量达到数十万,因此不可能一次性全部导入。而数据库中的商品数据实际会达到数十万条,某些项目中可能达到数百万条。不过查询的目的是得到结果,解析为ItemDTO,还要再加一步对结果的解析。我们如果要将这些数据导入索引库,肯定不能逐条导入,而是采用批处理方案。我们需要将数据库中的商品信息导入elasticsearch中,而不是造假数据了。索引库结构与数据库结构还存在一些差异,因此我们要定义一个索引库结构对应的实体。每当商品服务对商品实现增删改时,索引库的数据也需要同步更新。
2024-07-07 21:13:25 1094
原创 Elasticsearch从入门到部署 文档操作 RestAPI
文档操作有哪些?POST /{索引库名}/_doc/文档id { json文档 }GET /{索引库名}/_doc/文档idDELETE /{索引库名}/_doc/文档id修改文档:PUT /{索引库名}/_doc/文档id { json文档 }POST /{索引库名}/_update/文档id { "doc": {字段}}JavaRestClient操作elasticsearch的流程基本类似。核心是方法来获取索引库的操作对象。初始化创建XxxIndexRequest。XXX是CreateGet。
2024-04-28 16:54:42 787 1
蓝桥杯人工智能团队赛模拟题三期答案
2024-05-20
后端微服务必看最新最热面试题
2024-04-06
office2016安装手册.pdf
2024-03-20
计算机二级 最新最热 MS Office选择题题库
2024-03-20
华为端云一体化端云一体化开发支持开发者在 DevEco Studio 内使用一种语言同时完成 HarmonyOS 应用的端侧与
2024-03-06
全网首发鸿蒙 HarmonyOS NEXT星河版零基础入门到实战,零基础也能快速入门鸿蒙开发教程
2024-02-11
某高校 软件体系结构 2022年考试真题,本人在考试中拿到了第一名的好成绩
2023-12-08
2023年全国大学生软件测试省赛web《凤凰网》功能测试
2023-11-11
2023年全国大学生软件测试省赛web《再生资源系统》功能测试
2023-11-11
2023年全国大学生软件测试预选赛 Web性能测试-喜马拉雅测试文档
2023-10-22
全国大学生软件测试大赛 2023年预选赛 -起点中文网测试需求文档.pdf
2023-10-22
全国大学生软件测试大赛 2023年预选赛 -有架测试需求文档.pdf
2023-10-22
全国大学生软件测试大赛web测试赛道2020年省赛网易云 真题
2023-10-19
Java结构型设计模式资料day03
2023-10-01
Java设计模式资料day02
2023-10-01
Java设计模式资料day01
2023-10-01
Java设计模式大纲+导学
2023-10-01
必看1年-本科-程序员面试简历模版
2023-10-01
程序员面试必看参考话术 万字!
2023-10-01
必看!Java批注简历标准 两千字
2023-10-01
JAVA开发五年程序员简历模版
2023-10-01
Dev-cpp下载资料
2023-09-06
Java大厂面试专题课-MySQL面试题-参考回答
2023-09-06
天机学堂(学成在线加强版)是一个基于微服务架构的生产级在线教育项目
2023-09-06
Java八股文最新消息中间件面试宝典
2023-09-06
Python精通爬虫资料 看这一篇就够了!
2023-09-06
《黑马头条》项目源码,采用的是SpringBoot+springcloud当下最流行的微服务为项目架构
2023-09-02
Java数据结构和Java算法
2023-08-22
面试题:有序斐波那契数列查找算法
2023-08-22
关于#编辑器#的问题,如何解决?
2023-07-12
TA创建的收藏夹 TA关注的收藏夹
TA关注的人