论创业者的幸存者偏差

     无论是在创业还是做一个单纯的产品设计时,我们都会采取借鉴他人的方式来解决当下遇到的问题。大多数人会根据存在即合理的原则,将市场上各种所谓之成功案例拼装在一起,当他们把这看似完美的杰作推向市场时,却发现这种东拼西凑不一定可以复制前人的成功。失败多次后,有人竟总结出复制成功是一门玄学的结论。那么我们就此来剖析人性,来探讨一下究竟是哪里出了问题。

    首先,我举一个很简单,但是富有争议的例子:就是中药是否是一门玄学?认为中药可以治病这一派人的观点往往是“基于实践观察”的,他们身边甚至包括他们自己确实有过被中药治愈的经历。对于反对派而已,他们毫不否认这点事实,但他们秉持的观点是未治愈者与致死者是不会发声的,所以他们坚持认为只有采取了随机分组对照试验的方法论才能称之为科学。从统计学上讲,我们讲前者的认识偏差称之为幸存者偏差。

    幸存者偏差最初源于二战时期的一个故事。盟军为了减少轰炸机在敌军放空炮火下的损失,采取统计战机不同部位的弹孔来决定加固战机的哪些部位。经过统计轰炸后幸存返回飞机的数据,大家发现一个问题:飞机最致命的发动机和驾驶舱重点率竟然是最低的,而飞机其他部位弹孔又非常稀疏。也就是说只有坠毁了得飞机才具有真正的统计价值,但是死人是不会说话的,坠毁的飞机很难再被找回。

    往往幸存者偏差会在我们的主观心理上作祟,由于人的行为与对事物的判断本质也是一种主观的对外界的统计而做出的结果,这种偏差也深深的影响了我们的行为判断。这就好像在我们的印象中飞机经常发生空难,而事实上飞机是中非常安全的交通工具,只不过不出事情,电视上不会报道;我们总觉得地铁人满为患,但地铁其实一直亏本运营,因为我们总是在人满为患的时候才去挤地铁;我们总觉得外国人都非常的有钱,因为乞丐没有钱来中国让你看见......你会发现很多我们眼中的事实在我们的主观认识中出现了严重的偏差,这也就致使我们在借鉴所谓成功案例时,并没有取得相应成功的原因。它真的“存在”么?它的确存在。它真的“合理”么?它未必合理。

    让我们来回到那些真实的,所谓成功的案例上来。在移动互联网的大潮中,“火”了app屡见不鲜,刨去微博、微信、淘宝这些处于第一梯队的app之外,美团、滴滴出行、宜人贷这种从o2o、p2p等各种领域切入的app也都逐渐成为装机必备。他们在移动互联网的成功已然成为创业者眼中的典范。在年初资本过热的时代,无论是初出茅庐的90后,还是久战沙场的互联网老兵都杀向了o2o、p2p等移动互联网领域,以其融到的资本数目来标榜自己的成功,而一些成熟型的公司也跟风全盘移动互联网化,就某房屋租赁公司而言,连签订租房合同也要在手机上完成。其中一个月抄一款app的公司不在少数,市场上大量同质化的app泛滥,就在这样的一股浪潮中,我们会发现一种现象,初创公司能流行起来的app寥寥无几,比较草根的几个就如:格子课表、脸萌、礼物说来讲,很多都是快速的兴起,快速的没落,更多的公司则停滞于A轮甚至是天使轮,与此同时,那些互联网巨头们却像是真正的赢家,不断的在各个领域里扩张,渗透更多的用户,盘根错节的划分势力。

    以上的情况让我想起一个宋鸿兵前几天在《鸿观》中讲的例子,就是墨西哥这个国家在加入北美自由贸易协定20年之后的一个现状,人们借鉴以往的自由贸易区的案例,想当然的认为,自由贸易势必会带来经济上的高度繁荣,然而20年后的墨西哥在诞生了诸多富翁寡头的背后是贫富差距的不断加大和贫困人口的飞速增长,偷渡到美国的墨西哥人没有减少,反而此类情况愈演愈烈。在这里,无论是宏观的政策制定者,还是微观的民众都出现了幸存者偏差,他们都想当然的认为自由与繁荣之间有着正向的联系。但其实我们真正应该加以考虑的核心问题是自由究竟为什么会带来繁荣,哪些案例中自由带来的是贫困、杀戮或者是战争呢?如今,互联网创业问题也就在于此,抄袭并不是一种罪,就拿历来“微创新”的鹅厂来说,一直是互联网界的常青藤。中国有句俗话:“天下文章一大抄,看你会抄不会抄”,那么究竟什么是“会抄”?

    所谓“不会抄”,从哲学上讲就是形而上学的看待事物,“存在即合理”中,我们往往把存在当做是一种表象来看待,就好像就很多产品经理在设计功能时,很表象的、形式化的就把功能借鉴过来,这就叫不会抄。像鹅厂提倡的“微创新”,本质依然在于创新,我曾多次强调,创新不是凭空发明一种世界上没有的东西,而是基于现实考虑,基于前人的成果,最重要的是根据自身的条件与需求提供一种前所未有的解决方案。只有这样的“微创新”才会被市场所接受。对于具有幸存者偏差的人来说,他们看到的往往是结果,所以他们主观的统计结果,加以判断,从而运用到自身的实践中来。但真正所谓成功案例之所以能够成功,是由于其发展的过程所决定的。也就是说,微信作为一款社交应用现在非常火,我也想做一个社交产品,我不能看到功能拿来就抄,我要研究是什么原因致使它存在这样一个功能或者这样一种设定,这是经过怎样的利弊论证才最后应用到上面的,其背后的原因是否与我现在遇到的问题相同,是否适合我当前app所处的应用场景和市场环境,开发的成本又有多高。经过这样一番论证之后,我才能决定是否放心大胆的对其进行微创新。任何微创新都要将自身的现状与参照产品的现状做合理化的比对,并基于一定自身的设计原则再下定结论

    我们在借鉴一款成功的范例时,同样要做好风险的评估。他人的成功不意味着你不会面临很高的风险,这不是优胜劣汰的天演论法则,而是只有适合才是真正合理的严肃探索。我们会经常听到周围很多人这样讲,创业头几次失败很正常,失败是成功之母嘛。创业界的新手不要以为前人的失败都是因为过度的天马行空的想象,他们其实也都是多次借鉴别人成功的经验,但是依旧没有取得相同的成就。有人甚至迷信于一定是模仿的不够到位,其实不然,他们只是在模仿中丢失了自我,忘掉了初心,不知道什么成功的经验是真正适合于自己的,总觉得别人的幸存就是真理,但其实成功很大程度上还在于概率上的侥幸。在鸡汤泛滥的年代里,必须有人来泼泼冷水,很多人就是没有做好足够的风险评估,把自己的产品做成成功案例的大杂烩最后幽然而终的。俗话说,多大号的脚穿多大号的鞋,借鉴别人的时候,多去创业老兵那里问问他们走过的坑,多看看失败的案例远比每天在朋友圈里转鸡汤有意义的多,总会发现适合自己的鞋,才是最合适的鞋,这个风起云涌的市场上,不是穿了大鞋把自己绊倒的,就是穿了小鞋之后痛只有自己知道的人。

    另外需要提到的就是,有些公司是属于闷声发大财的,就是它可能很成功,但是由于产品也许算是灰色链条,不足与外人道,大众对他并不了解,并不在大家竞相模仿之列。但并不意味着这些看似非幸存的案例上没有你值得学习的东西,往往蓝海和捷径就在这些案例上体现。当然,我们没有必要去刻意挖掘这些闷声发大财的公司的存在。我个人总认为看待一切事物总要怀着敬畏之心,既不要对他们表示不屑,嗤之以鼻,也不要就对其刻意的过度解读。总之,我们要让我们的采样更加接近市场的本质,才能做到分析的合理。

    总结,市场经济终究是由资本驱动的,无论市场怎样,最后都要归结于市场博弈。最终小人物想要登上舞台,只能乱中取胜,雾里看花,冷静的分析本质,合理的利用资源,不要搭空架子,解决实际问题,有机会多与你的投资人交流,他们看过失败的案例比你吃过的盐都多,统计分析的时候别忘了把这一大片死人也算上。

转载于:https://www.cnblogs.com/jacklandrin/p/4925848.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
以下是使用Jupyter Notebook进行泰坦尼克号幸存者分类的步骤: 1. 导入必要的库和数据集 ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test.csv') ``` 2. 数据探索和可视化 ```python # 查看数据集前5行 train_data.head() # 查看数据集信息 train_data.info() # 查看数据集中数值型特征的统计信息 train_data.describe() # 查看数据集中各特征之间的相关性 sns.heatmap(train_data.corr(), annot=True, cmap='coolwarm') # 查看幸存者和未幸存者的数量 sns.countplot(x='Survived', data=train_data) # 查看不同性别的幸存者和未幸存者的数量 sns.countplot(x='Survived', hue='Sex', data=train_data) # 查看不同船舱等级的幸存者和未幸存者的数量 sns.countplot(x='Survived', hue='Pclass', data=train_data) # 查看不同年龄段的幸存者和未幸存者的数量 sns.histplot(x='Age', hue='Survived', data=train_data, kde=True) ``` 3. 数据清洗和特征工程 ```python # 填充缺失值 train_data['Age'].fillna(train_data['Age'].median(), inplace=True) test_data['Age'].fillna(test_data['Age'].median(), inplace=True) test_data['Fare'].fillna(test_data['Fare'].median(), inplace=True) # 将性别和登船港口转换为数值型特征 train_data['Sex'] = train_data['Sex'].map({'male': 0, 'female': 1}) test_data['Sex'] = test_data['Sex'].map({'male': 0, 'female': 1}) train_data['Embarked'] = train_data['Embarked'].map({'S': 0, 'C': 1, 'Q': 2}) test_data['Embarked'] = test_data['Embarked'].map({'S': 0, 'C': 1, 'Q': 2}) # 创建新特征FamilySize和IsAlone train_data['FamilySize'] = train_data['SibSp'] + train_data['Parch'] + 1 test_data['FamilySize'] = test_data['SibSp'] + test_data['Parch'] + 1 train_data['IsAlone'] = np.where(train_data['FamilySize'] == 1, 1, 0) test_data['IsAlone'] = np.where(test_data['FamilySize'] == 1, 1, 0) # 删除无用特征 train_data.drop(['PassengerId', 'Name', 'Ticket', 'Cabin', 'SibSp', 'Parch'], axis=1, inplace=True) test_data.drop(['PassengerId', 'Name', 'Ticket', 'Cabin', 'SibSp', 'Parch'], axis=1, inplace=True) ``` 4. 模型训练和预测 ```python from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score X = train_data.drop('Survived', axis=1) y = train_data['Survived'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LogisticRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) print('Accuracy:', accuracy_score(y_test, y_pred)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值