来源:KDD ’21, August 14–18, 2021, Virtual Event, Singapore
一、主要内容
本文主要针对无监督离群值检测的公平性问题进行研究,在现有存在的两种公平检测算法FairLOF跟FairOD还存在一些不足,需要进一步改进的背景下,作者提出了基于深度聚类的公平离群点检测框架(DCFOD)。同时,还提出了一种实例级的加权表示学习策略,DCFOD框架通过该策略和公平-对抗训练来优化检测有效性和群体公平性。
在8个真实世界的数据集上,OCFOD在17种非监督离群点检测算法的对比实验,证明提出的OCFOD方法在离群点有效性和公平性的检测的检测上取得了较好的表现,有着较为明显的优势。
二、问题定义
A.框架模型
根据不同的应用场景,提出了丰富的公平概念,包括个体公平,群体公平和子群公平。
无监督离群点检测可以分解为无监督离群点检测和公平学习。如图1,,权值动态更新,OCFOD的表示学习由特征提取器和公平对抗子群鉴别器组成。
对于自适应公平性,本文进行最小-最大训练。而特征提取器用于使预测停止,实现预期的群体公平。动态权值更新模块则保证公平学习中离群点检测的有效性。
B.Weighted Representation Learning
特征提取器用来寻找样本中的潜在表示;子群鉴别器用来预测敏感子群隶属度。将训练目标建立为三个损失函数:自重构损失Ls、公平对抗损失Lf和聚类正则化Lr。
C.Self-reconstruction Loss
使用包含一个寻找特征表示的编码器和