一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
思路,这个题和62题很像,第i行第j列的结果只和自己的上边的结果和左边的结果有关,取这两个值的最大值。如果是障碍物,则直接置为0即可
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
vector<vector<int> >v_i(obstacleGrid);
int width = v_i[0].size();
int height = v_i.size();
int flag=0;
if(v_i[0][0]==0) flag = 0;
else flag=1;
if(width==1 && height==1 && v_i[0][0]==1){
v_i[0][0]=0;
}
else if(width==1 && height==1 && v_i[0][0]==0){
v_i[0][0]=1;
}
for (int i = 1; i < width; ++i) {
if(v_i[0][i]==0 && flag==0)
{
v_i[0][i] = 1;
}
else {
//有障碍
flag=1;
v_i[0][i] = 0;
}
}
if(v_i[0][0]==0) flag = 0;
else flag=1;
for (int i = 1;i < height; ++i) {
if(v_i[i][0]==0 && flag==0)
v_i[i][0] = 1;
else {
flag = 1;
v_i[i][0] = 0;
}
}
for (int i = 1; i < height; ++i) {
for (int j = 1; j < width; ++j) {
if(v_i[i][j]==1)
v_i[i][j]=0;
else
{
if(i==0) v_i[i][j]=v_i[i][j-1];
else if(j==0) v_i[i][j]=v_i[i-1][j];
else v_i[i][j] = v_i[i][j-1]+v_i[i-1][j];
}
}
}
return v_i[height-1][width-1];
}
};