这个题利用二进制位去做即可,可惜当时没想起来,哎。。。太菜,又给母校丢人(这个是我在考试之后做出来的,因此并未提交Oj系统,因此不确定超时和其他特殊情况,虽然理论上应该不超时吧)。。。。晚上一定把这道题整理一下,题目如下:
已知一个正整数n(3<=n<=15),将所有n的乘方幂以及所有n的乘方幂(有限个且互不相等)之和组成一个递增序列。例如:当n为4时,该序列为:1,4,5,16,17,20,21……(4^0,4^1,4^0+4^1,4^2,4^0+4^2,4^1+4^2,4^0+4^1+4^2,……)请求出该序列的第K项(10进制)
输入描述:
输入只有1行,为2个正整数,两数之间用一个空格隔开:n k (n, k的含义与上述描述相同,且3<=n<=15, 10<=k<=1000)。
输出描述:
输出为计算结果,为一个正整数(注意在所有测试数据中哦,结果均不会超过2,1×10^9)。整数前不要有空格或其他任何符号。
输入:3 100
输出:981
思路:这道题其实可以归结为二进制位的问题,就是,按照题目要求,其实是二进制数的递增(我语文不好,直接上规律,假设n=2)
排序如下:2^0,2^1,2^0+2^1,2^2,2^2+2^0,2^2+2^1,2^0+2^1+2^2……将指数拿出来,就得到下面的序列: 001, 010,011,100,101,110,111,也就是说,这道题如果求n=2,k=3的话,直接:1*2^0+1*2^1+0*2^2 = 2^0+2^1=3,然后就把n替换为其他数就可以了
代码如下(因为题目规定 k<=1000因此,应该不会超时间,不过没有提交过。。。):
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
vector<int> vi;
int main()
{
int n, k;
cin>>n>>k;
//k转换为二进制
do{
int tmp = k%2;
vi.push_back(tmp);
k /= 2;
}while(k!=0);
double sum = 0;
for (int i = 0; i < vi.size(); ++i) {
sum += vi[i]*pow(n, i);
}
cout<<sum;
}