题目:一个整型数组里除了两个数字之外,其他的数字都出现了两次。请些程序找出这两个只出现一次的数字。要求时间复杂度为O(n),空间复杂度为O(1).
如输入数组{2,4,3,6,3,2,5,5},因为只有4,6这两个数字只出现一次,其他数字都出现了两次,所以输出4,6
这是一个比较难的题目,很少有人在面试的时候不需要提示一下子想到最好的解决办法。一般当应聘者想了几分钟那个后还没有思路,面试官会给出一些提示。
我们想到异或运算的一个性质:任何一个数字异或它自己都等于0,也就是说,如果我们从头到尾依次异或数组中的每一个数字,那么最终的结果刚好是哪个出现一次的数字,因为那些成对出现的两次的数字都在异或中低消了。
我们试着把数组分成两个子数组,使得每个子数组只包含一次出现一次的数字,而其他数字都成对出现两次。如果能够这样拆分成两个数组,我们就可以按照前面的办法分别找出两个只出现一次的数字了。
我们还是从头到尾依次异或数组中的每一个数字,那么最终得到的结果就是两个只出现一次的数字的异或的结果。因为其他数字都出现两次,在异或中全部抵消了。由于这两个数字肯定不一样,那么异或的结果肯定不为0,也就是说在这个结果数字的二进制表示中至少有一位为1.我们在结果数字中找到最右边为1的位的位置,记为第n位。现在我们以第n位是不是1为标准把原数组中的数字分成两个子数组,第一个子数组中的每个数字的第n位都是1,而第二个子数组中每个数字的第n位都为0.由于我们分组的标准是数字中的某一位是1还是0,那么出现了两次的数字肯定被分配到同一个子数组中。因为两个相同的数字的任意一位都是相同的,我们不可能把两个相同的数字分配到两个子数组中去,于是我们已经把原数组分成了两个子数组,每个子数组都包含了一个只出现一次的数字,而其他数字都出现了两次。我们已经知道如何在数组中找出唯一一个只出现一次的数字,因此到此为止所有的问题都解决了。 public void findNumsAppearOnce(int[] arr){
if(arr == null)
return;
int number = 0;
for(int i: arr)
number^=i;
int index = findFirstBitIs1(number);
int number1= 0,number2 = 0;
for(int i : arr){
if(isBit1(i,index))
number1^=i;
else
number2^=i;
}
System.out.println(number1);
System.out.println(number2);
}
private int findFirstBitIs1(int number){
int indexBit = 0;
while((number & 1)== 0){
number = number >> 1;
++indexBit;
}
return indexBit;
}
private boolean isBit1(int number,int index){
number = number >>index;
return (number & 1) == 0;
}