Python贝壳网二手小区数据爬取(2025年3月更)


在这里插入图片描述

上次写了用python爬取安居客二手小区数据,这次应粉丝要求写一篇爬取贝壳网二手小区数据的教程,因为贝壳网的反爬策略比安居客的更为复杂,所以这次就大胆一试!!!
这次教程内容大部分都是由Ai帮我写的,所以可能不太详细!! 欢迎私信或者评论区提问~~
先来看看网页,在这里找到小区,并选择具体的市县区域:
在这里插入图片描述
然后我们F12打开网络看看数据在哪里
在这里插入图片描述
在这里插入图片描述
我们在这个文档里面找到了对应的小区数据,言外之意只需要请求这个url即可得到想要的数据啦~
同时,在这些信息里面还有一个小区详情页的链接,里面有诸如小区的容积率、绿化率、开发商等等信息,我们一起给它爬下来
在这里插入图片描述


大体思路就是:

  1. 先用一些用户信息如浏览器类型、cookie等信息来包装爬虫
  2. 请求一遍小区列表的url来获取小区总数
  3. 通过小区总数来计算需要请求的页数,使用for循环来遍历每一页的小区
  4. 提取每页小区的数据,得到每个小区的详情页链接后继续发送请求来进入详情页
  5. 提取小区详情页数据
  6. 将所有结果保存为一个excel表格

废话不多说,直接上干货~

一、代码整体架构解析

# 导入必要库(相当于工具箱)
import requests  # 网络请求工具
import time      # 时间控制工具
import random    # 随机数生成器
import pandas as pd  # 数据表格工具
from bs4 import BeautifulSoup  # HTML解析器
import math      # 数学计算工具
from concurrent.futures import ThreadPoolExecutor, as_completed  # 多线程工具

下面是整体的函数流程以及每个函数大体的作用~

序号函数名称功能描述输入参数返回值
1init_session(config)初始化网络会话对象config: 用户配置字典requests.Session对象
2get_params(session)生成动态请求参数session: 会话对象请求参数字典
3fetch_list_page()抓取列表页数据session, page_url解析后的数据列表
4parse_list_page(html)解析列表页HTML内容html: 页面源代码字符串小区信息列表
5fetch_detail_batch()批量抓取详情页数据session, urls详情数据字典
6parse_detail_page()解析详情页完整信息session, url详细字段字典
7crawl_full_data()主控流程(分页抓取数据)session合并后的完整数据列表

二、各部分代码详解

1. main()主函数解析

要修改的地方主要有四个,其余的不需要特别的改动!!!!

  1. 城市(city)
  2. 市县(region)
  3. Cookies
  4. excel表格输出的路径
# 主程序入口(程序起点)
if __name__ == "__main__":
    # ================== 用户配置区域 ==================
    CONFIG = {
        "city": "fs",       # 目标城市拼音(如: 佛山->fs,上海->sh)
        "region": "nanhai", # 目标区域拼音(如: 南海区->nanhai)
        "cookies": {        # 必需Cookie
            'lianjia_uuid': '自修修改',
            'lianjia_token': '自行修改',
            'security_ticket': '自行修改'
        },
        "srcid": "自行修改"
    }
    #输出的excel路径
    output_name = f'{CONFIG["city"]}_{CONFIG["region"]}_小区数据.xlsx'
    # ================================================

    # 初始化会话
    session = init_session(CONFIG)
    
    # 执行爬取
    start_time = time.time()
    final_data = crawl_full_data(session)
    
    # 保存结果
    if final_data:
        df = pd.DataFrame(final_data)[[
            '小区名称', '参考均价', '成交信息', '出租信息', '行政区', '商圈', '建筑年代',
            '详情页均价', '建筑类型', '房屋总数', '楼栋总数', '绿化率', '容积率',
            '交易权属', '建成年代', '供暖类型', '用水类型', '用电类型',
            '物业费', '附近门店', '物业公司', '开发商', '详情页链接'
        ]] 
        df.to_excel(output_name, index=False)
        print(f"数据已保存至: {output_name}")
        print(f"总计 {len(df)} 条数据,耗时 {(time.time()-start_time)/60:.1f} 分钟")

🔍 ​参数说明:

  • city:目标城市拼音缩写(如佛山→fs,广州→gz)
  • region:目标区域拼音缩写(如天河区→tianhe)
  • cookies:登录贝壳网后浏览器生成的登录凭证(关键!没有它无法获取数据)
  • srcid:加密参数(需从网页源代码中复制,定期更新防止失效)
    在这里插入图片描述

2. 会话初始化(伪装浏览器身份)

def init_session(config):
    session = requests.Session()  # 创建会话容器
    session.headers.update({      # 设置请求头(伪装浏览器)
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)...',  # 浏览器指纹
        'Referer': f'https://{config["city"]}.ke.com/'  # 来源页面
    })
    session.cookies.update(config["cookies"])  # 加载登录凭证
    return session

🛡️ ​参数解析:

  • ​Session对象:保持TCP连接复用,提升访问速度
  • ​User-Agent伪装:模拟Chrome浏览器访问(防止被识别为爬虫)
  • Referer伪造:隐藏真实来源页面(如访问北京小区页时,显示来自bj.ke.com)
  • ​Cookie管理:自动携带登录凭证(相当于拿着钥匙开门)

3. 动态参数生成(反爬虫核心机制)

def get_params(session):
    return {
        '_t': str(int(time.time() * 1000)),  # 13位时间戳(防重复)
        'srcid': session.config['srcid']     # 设备指纹(防篡改)
   }

⏳ ​时间戳的作用:防止重复请求被识别

  • time.time():获取当前时间(精确到秒)
  • *1000:转换成毫秒级精度
  • int():去掉小数部分
  • str():转换成字符串

🔑srcid的重要性:

  1. 设备唯一标识符(类似手机的IMEI号)
  2. 需定期从网页源代码更新(右键网页→查看源代码→搜索srcid)

4. 列表页抓取(获取小区列表)

def fetch_list_page(session, page_url):
    time.sleep(random.uniform(0.2, 0.4))  # 随机等待0.2-0.4秒
    response = session.get(page_url, timeout=8)  # 发送网络请求
    return parse_list_page(response.text)  # 解析HTML内容

⏱️ ​时间控制:

  • random.uniform(0.2,0.4):生成0.2到0.4之间的随机数
  • time.sleep():让程序暂停指定时间
    ​目的:模拟人类浏览行为,防止触发反爬机制

🚨 ​异常处理:
如果请求失败(超时、404错误等),会自动跳过并打印错误信息

5. 列表页解析(提取小区信息)

def parse_list_page(html):
    soup = BeautifulSoup(html, 'html.parser')  # 创建HTML解析器
    items = soup.select('li.xiaoquListItem')      # 定位所有小区条目
    
    results = []
    for item in items:
        info = {
            '小区名称': item.select_one('.title a').text.strip(),  # 提取名称
            '参考均价': item.select_one('.totalPrice span').text + '元/㎡' if ... else '暂无数据'
            # 其他字段类似...
        }
        results.append(info)
    return results

🔍 ​CSS选择器用法:

  • select_one(‘.title a’):选择class为"title"的元素下的第一个标签
  • .text.strip():提取文本内容并去除两端空白
  • ​条件判断:如果某个元素不存在(如无均价信息),显示"暂无数据"

6. 多线程详情页抓取(高效采集)

def fetch_detail_batch(session, urls):
    with ThreadPoolExecutor(max_workers=3) as executor:
        # 提交所有URL到线程池
        future_to_url = {executor.submit(parse_detail_page, url): url for url in urls}
        
        # 逐个获取结果
        for future in as_completed(futures):
            url = future_to_url[future]
            details[url] = future.result()
            time.sleep(random.uniform(0.2, 0.4))  # 保持访问节奏

🚀 ​多线程原理:

  • ThreadPoolExecutor(max_workers=3):同时开启3个线程
  • as_completed():哪个线程先完成就先处理结果
  • ​限速机制:每个请求间隔0.2-0.4秒,避免服务器压力过大

7. 详情页解析(深度数据提取)

def parse_detail_page(session, url):
    soup = BeautifulSoup(response.text, 'html.parser')
    
    # 解析多列布局数据
    def extract_multi_column():
        data = {}
        for col in soup.select('.xiaoquInfoItemCol'):
            for item in col.select('.xiaoquInfoItem'):
                label = item.select_one('.xiaoquInfoLabel').text.strip()
                value = item.select_one('.xiaoquInfoContent').text.strip()
                data[label] = value
        return data
    
    # 提取关键字段
    detail_data = {
        '房屋总数': ''.join(filter(str.isdigit, multi_col_data.get('房屋总数', ''))) or '0',
        '绿化率': multi_col_data.get('绿化率', '').replace('%', '') if multi_col_data.get('绿化率') else '暂无数据'
        # 其他字段...
    }
    return detail_data

🔧 ​数据清洗技巧:

  • filter(str.isdigit, “总计1582户”):提取纯数字(结果:“1582”)
  • replace(‘%’, ‘’):去除百分比符号(结果:“35”)
  • 容错处理:使用or和条件表达式处理缺失字段

8. 主流程控制(程序大脑)

def crawl_full_data(session):
    try:
        # 获取总小区数
        total = int(soup.select_one('h2.total span').text)
        total_pages = math.ceil(total / 30)  # 每页30条数据
        
        print(f"\n当前区域共有 {total} 个小区")
        print(f"需要爬取 {total_pages} 页数据\n")
        
    except Exception as e:
        print(f"获取总数失败: {str(e)}")
        total_pages = 1  # 异常时默认只爬取1页
    
    all_data = []
    for page in range(1, total_pages + 1):
        for retry in range(2):  # 最多重试2次
            try:
                list_data = fetch_list_page(page_url)
                detail_results = fetch_detail_batch(list_data)
                
                # 合并数据
                for item in list_data:
                    item.update(detail_results.get(item['详情页链接'], {}))
                
                all_data.extend(list_data)
                print(f"第{page}页完成,累计{len(all_data)}条数据")
                break
            except Exception as e:
                print(f"第{retry+1}次重试失败: {str(e)}")
        time.sleep(random.uniform(0.2, 0.4))  # 页间延迟
    return all_data

📊 ​流程控制要点:

  • ​智能分页:自动计算总页数(例如100个小区→4页)
  • ​双重保障:每页最多重试2次,确保数据完整性
  • 数据合并:将列表页基础信息与详情页数据合并
  • 限速机制:页间访问间隔0.2-0.4秒

三、核心技术点总结

  1. 数据清洗三板斧
过滤非数字:filter(str.isdigit, text) → 保留纯数字
​文本替换:.replace(old, new) → 删除/替换特定字符
条件赋值:value if condition else default → 处理缺失数据
  1. 容错机制设计
 .get(key, default):安全获取字典值,避免KeyError or '默认值':当结果为空时提供兜底方案
 if condition:严格校验数据存在性
  1. 字符串处理技巧
.strip():去除首尾空白符
.split():按空白符分割字符串
' '.join(list):用空格连接列表元素

四、完整代码

import requests
import time
import random
import pandas as pd
from bs4 import BeautifulSoup
import math
from concurrent.futures import ThreadPoolExecutor, as_completed

def init_session(config):
    """初始化会话对象"""
    session = requests.Session()
    session.headers.update({
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
        'Referer': f'https://{config["city"]}.ke.com/xiaoqu/{config["region"]}/'
    })
    session.cookies.update(config["cookies"])
    session.config = config  # 存储配置信息
    return session

def get_params(session):
    """生成动态请求参数"""
    return {
        '_t': str(int(time.time() * 1000)),
        'srcid': session.config['srcid']
    }

def fetch_list_page(session, page_url):
    """抓取列表页数据"""
    try:
        time.sleep(random.uniform(0.2, 0.4))
        response = session.get(page_url, params=get_params(session), timeout=8)
        response.raise_for_status()
        return parse_list_page(response.text)
    except Exception as e:
        print(f"列表页请求失败: {str(e)}")
        return []

def parse_list_page(html):
    """解析列表页信息"""
    soup = BeautifulSoup(html, 'html.parser')
    items = soup.select('li.xiaoquListItem')
    
    results = []
    for item in items:
        try:
            info = {
                '小区名称': item.select_one('.title a').text.strip(),
                '参考均价': f"{item.select_one('.totalPrice span').text}元/㎡" if item.select_one('.totalPrice') else '暂无数据',
                '成交信息': item.select_one('.houseInfo a[href*="chengjiao"]').text.strip() if item.select_one('.houseInfo a[href*="chengjiao"]') else "暂无成交",
                '出租信息': item.select_one('.houseInfo a[href*="zufang"]').text.strip() if item.select_one('.houseInfo a[href*="zufang"]') else "暂无出租",
                '行政区': item.select_one('.district').text.strip() if item.select_one('.district') else "未知区域",
                '商圈': item.select_one('.bizcircle').text.strip() if item.select_one('.bizcircle') else "未知商圈",
                '建筑年代': ' '.join(item.select_one('.positionInfo').stripped_strings).split('/')[-1].strip() if item.select_one('.positionInfo') else "未知",
                '详情页链接': item.select_one('a.maidian-detail[href]')['href']
            }
            results.append(info)
        except Exception as e:
            print(f"解析异常: {str(e)}")
    return results

def fetch_detail_batch(session, urls):
    """批量获取详情页数据"""
    details = {}
    with ThreadPoolExecutor(max_workers=3) as executor:
        future_to_url = {executor.submit(parse_detail_page, session, url): url for url in urls}
        for future in as_completed(future_to_url):
            url = future_to_url[future]
            details[url] = future.result()
            time.sleep(random.uniform(0.2, 0.4))
    return details

def parse_detail_page(session, url):
    """解析详情页完整信息"""
    try:
        time.sleep(random.uniform(0.6, 1.0))
        response = session.get(url, params=get_params(session), timeout=10)
        soup = BeautifulSoup(response.text, 'html.parser')
        
        # 辅助函数:安全提取单列信息
        def safe_extract_single(label_text):
            try:
                item = soup.find('span', class_='xiaoquInfoLabel', string=label_text)
                return item.find_next('span', class_='xiaoquInfoContent').text.strip()
            except:
                return '暂无数据'

        # 辅助函数:处理多列信息
        def extract_multi_column():
            data = {}
            columns = soup.select('.xiaoquInfoItemCol')
            for col_idx, col in enumerate(columns):
                items = col.select('.xiaoquInfoItem')
                for item in items:
                    label = item.select_one('.xiaoquInfoLabel').text.strip()
                    value = item.select_one('.xiaoquInfoContent').text.strip()
                    data[label] = value
            return data

        # 处理多列区域数据
        multi_col_data = extract_multi_column()
        
        # 处理单行区域数据(物业费、附近门店等)
        detail_data = {
            '建筑类型': multi_col_data.get('建筑类型', '暂无数据'),
            '房屋总数': ''.join(filter(str.isdigit, multi_col_data.get('房屋总数', ''))) or '0',
            '楼栋总数': ''.join(filter(str.isdigit, multi_col_data.get('楼栋总数', ''))) or '0',
            '绿化率': multi_col_data.get('绿化率', '').replace('%', '').strip(),
            '容积率': multi_col_data.get('容积率', '暂无数据'),
            '交易权属': multi_col_data.get('交易权属', '暂无数据'),
            '建成年代': multi_col_data.get('建成年代', '暂无数据'),
            '供暖类型': multi_col_data.get('供暖类型', '暂无数据'),
            '用水类型': multi_col_data.get('用水类型', '暂无数据'),
            '用电类型': multi_col_data.get('用电类型', '暂无数据'),
            # 处理单行区域
            '物业费': safe_extract_single('物业费').split('元')[0].strip(),
            '附近门店': ' '.join(safe_extract_single('附近门店').replace('\n', ' ').split()),
            '物业公司': safe_extract_single('物业公司'),
            '开发商': safe_extract_single('开发商'),
            '详情页均价': f"{soup.select_one('.xiaoquUnitPrice').text.strip()}元/㎡" if soup.select_one('.xiaoquUnitPrice') else '暂无数据'
        }
        
        return detail_data
        
    except Exception as e:
        print(f"详情页解析异常: {str(e)}")
        return {}

def crawl_full_data(session):
    """完整爬取流程"""
    config = session.config
    try:
        # 获取总小区数
        response = session.get(
            f"https://{config['city']}.ke.com/xiaoqu/{config['region']}/",
            params=get_params(session)
        )
        soup = BeautifulSoup(response.text, 'html.parser')
        total = int(soup.select_one('h2.total span').text)
        total_pages = math.ceil(total / 30)

        # 打印统计信息
        print(f"\n当前区域共有 {total} 个小区")
        print(f"需要爬取 {total_pages} 页数据\n")
        
    except Exception as e:
        print(f"获取总数失败: {str(e)}")
        total = 0
        total_pages = 0

    all_data = []
    for page in range(1, total_pages + 1):
        page_url = f"https://{config['city']}.ke.com/xiaoqu/{config['region']}/p{page}"
        
        for retry in range(2):
            try:
                list_data = fetch_list_page(session, page_url)
                detail_urls = [item['详情页链接'] for item in list_data]
                detail_results = fetch_detail_batch(session, detail_urls)
                
                for item in list_data:
                    item.update(detail_results.get(item['详情页链接'], {}))
                
                all_data.extend(list_data)
                print(f"第{page}页完成,累计{len(all_data)}条数据")
                break
            except Exception as e:
                print(f"第{retry+1}次重试: {str(e)}")        
        time.sleep(random.uniform(0.2, 0.4))
    
    return all_data

if __name__ == "__main__":
    # ================== 用户配置区域 ==================
    CONFIG = {
        "city": "fs",       # 目标城市拼音(如: 佛山->fs,上海->sh)
        "region": "nanhai", # 目标区域拼音(如: 南海区->nanhai)
        "cookies": {        # 必需Cookie
            'lianjia_uuid': '自行修改',
            'lianjia_token': '自行修改',
            'security_ticket': '自行修改'
        },
        "srcid": '自行修改'
    }
    #输出的excel路径
    output_name = f'{CONFIG["city"]}_{CONFIG["region"]}_小区数据.xlsx'
    # ================================================

    # 初始化会话
    session = init_session(CONFIG)
    
    # 执行爬取
    start_time = time.time()
    final_data = crawl_full_data(session)
    
    # 保存结果
    if final_data:
        df = pd.DataFrame(final_data)[[
            '小区名称', '参考均价', '成交信息', '出租信息', '行政区', '商圈', '建筑年代',
            '详情页均价', '建筑类型', '房屋总数', '楼栋总数', '绿化率', '容积率',
            '交易权属', '建成年代', '供暖类型', '用水类型', '用电类型',
            '物业费', '附近门店', '物业公司', '开发商', '详情页链接'
        ]]
        df.to_excel(output_name, index=False)
        print(f"数据已保存至: {output_name}")
        print(f"总计 {len(df)} 条数据,耗时 {(time.time()-start_time)/60:.1f} 分钟")

五、运行效果

在这里插入图片描述
在这里插入图片描述

六、特别说明(运行不了的时候看这里!)

  1. 记得替换main里面的各种参数,尤其是cookies!用的cookies是你自己浏览器登陆贝壳网,并且完成验证之后的那个cookies!!!
  2. 如果没有修改excel输出路径找不到输出的文件,就在这个代码文件所在的文件夹里面找
  3. 如果嫌爬取速度太慢可以自行修改time.sleep()里的时间,当然间隔越小被反爬的概率越大
  4. 不能保证网页结构后续恒久不变,比如class的标签变了需要重新修改对应的标签,因此代码也具有时效性~
### 使用 Scrapy 编写爬虫程序抓取贝壳数据 #### 创建 Scrapy 项目 为了启动一个新的 Scrapy 项目,需执行如下命令来初始化项目结构: ```bash scrapy startproject beike_rental_spider ``` 这会创建一个名为 `beike_rental_spider` 的目录,其中包含了项目的配置文件和其他默认设置。 #### 定义 Spider 类 在 `spiders` 文件夹内新建 Python 脚本用于定义具体的 spider。对于贝壳而言,假设目标是从首页开始遍历各分类页面并提取源链接,再深入到每一个详情页获取详细的租赁信息。 ```python import scrapy from ..items import BeikeRentalItem class BeikeSpider(scrapy.Spider): name = "beike" allowed_domains = ["ke.com"] start_urls = ['https://bj.zu.ke.com/zufang/'] def parse(self, response): # 解析列表页中的每条记录URL,并发起请求访问详情页 for href in response.css('div.content__list--item a::attr(href)').extract(): yield response.follow(href, callback=BeikeSpider.parse_detail) # 处理分页逻辑,继续翻阅下一页直到结束 next_page = response.xpath('//a[@gahref="results_next_page"]/@href').get() if next_page is not None: yield response.follow(next_page, self.parse) @staticmethod def parse_detail(response): item = BeikeRentalItem() title = response.css('.content__title::text').get().strip()[:-9] price = int(float(response.css('.content__aside--title span:first-child::text').re(r'\d+')[0])) area_info = ''.join([i.strip() for i in response.css('.content__article__info ul li:nth-of-type(1)::text').extract()]) house_type = response.css('.content__article__info ul li:nth-of-type(2)::text').get().strip() orientation = response.css('.content__article__info ul li:nth-of-type(3)::text').get().strip() floor_level = response.css('.content__article__info ul li:nth-of-type(4)::text').get().strip() subway_distance = response.css('.content__article__info ul li:nth-of-type(-n+6):not(:nth-last-child(-n+2))::text').getall()[::-1][0].strip() item['title'] = title item['price'] = price item['area_info'] = area_info item['house_type'] = house_type item['orientation'] = orientation item['floor_level'] = floor_level item['subway_distance'] = subway_distance yield item ``` 上述代码片段展示了如何构建一个简单的 Spider 来处理从贝壳上收集的数据[^1]。需要注意的是,在实际开发过程中可能还需要考虑多细节问题,比如异常情况的捕获、动态加载内容的支持以及应对各种形式的反爬机制等。 #### 设置 Item Pipeline 和 Output 存储 为了让采集来的数据能够被妥善保存下来,可以在 settings.py 中指定输出管道 (pipeline),并将结果导出至 JSON 或 CSV 文件中: ```python ITEM_PIPELINES = { 'beike_rental_spider.pipelines.BeikeRentalPipeline': 300, } FEEDS = { 'rentals.json': {'format': 'json'}, } ``` 此外,如果希望进一步优化性能或实现增量新等功能,则可参考相关文档了解关于中间件、下载器以及其他高级特性的应用方法[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值