房产数据挖掘(一):贝壳二手房源列表

二手房挂牌房源,是我们分析房地产价格分布和走势的重要参考依据。那么,我们应该如何爬取这些房源数据,并用于数据分析和可视化呢?今天我们以贝壳二手房为例,来介绍一下基本的步骤。

一、操作环境

1. 浏览器:Safari浏览器(版本:17.31)

2. Python版本:Python3.12

3. 开发环境:Pycharm 2023.3(Community Edition)

4. 操作系统:MacOS 14.3(Sonoma)

二、网页解析

1. 打开某城市的房源界面(本文以“合肥市”为例)

合肥二手房_合肥二手房出售买卖信息网【合肥贝壳找房】icon-default.png?t=N7T8https://hf.ke.com/ershoufang/rs/

2. 观察网页布局:属于典型的“分页列表式”、“静态网页”。

    这类网页的爬取策略,一般是:获取总页码数➡️爬取第1页的数据➡️循环爬取每页的数据

3. 寻找数据源:

    页面空白处“点击右键”——“检查元素”,进入开发者工具。选择”网络“标签页,然后刷新网页,获取所有网页加载项。对列表中的所有加载项依次进行预览,寻找数据源地址。

    在这里,我们很容易就发现,数据源网址为:https://hf.ke.com/ershoufang/pg100/

    其实这就是该网页的网址。这意味着,房源数据就在网页html代码中。

    这类网页数据的爬取策略,一般是:爬取网页html代码➡️定位并筛选出数据所在模块➡️循环筛选出每一行数据➡️对每行数据进行清洗、分类整理

    

4. 估计

,采集北京上海广州深圳等21个中国主要城市的价数据(小区,二手房),稳定可靠快速!支持csv存储,注释丰富。 爬虫(Web Crawler)是种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫个或多个初始URL开始,递归或迭代地发现新的URL,构建个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值