摘要:
1,笛卡尔树的介绍
2,笛卡尔树的构建
3,笛卡尔树的代码实现
4,笛卡尔树的特性
5,笛卡尔树的应用
1,笛卡尔树的介绍
前面我们讲过《征服数据结构》堆和《征服数据结构》二叉搜索树(BST),能不能把这两种数据结构的特性结合起来构造一棵新的树呢?当然是可以的,这个就是我们这里要讲的笛卡尔树(Cartesian tree)。
笛卡尔树的每个节点有两个值 (x,y) ,其中一个满足二叉搜索树的特性,一个满足堆的特性,所以笛卡尔树是一棵具有二叉搜索树和堆的两种特性的二叉树
笛卡尔树中节点的两个值分别是数组中元素的值,和该元素在数组中的下标,其中元素的值满足堆的特性,元素的下标满足二叉搜索树的特性。
下面使用数组 [5, 6, 3, 8, 9, 1, 4, 7, 2] 构造一棵笛卡尔树。
2,笛卡尔树的构建
因为元素的下标满足二叉搜索树的特性,而数组中元素的下标又是递增的,所以新插入的节点要么是根节点,要么是根节点右子树上的某个节点,不可能是根节点左子树上的某个节点。
所以节点插入的时候不需要考虑左子树,又由于元素的值满足堆的特性(这里我们选择最小堆),如果新插入的节点比根节点小,那么新节点就变成根节点的父节点,根节点就变成新节点的左子节点,如下图所示。
如果新节点的值比根节点大,那么新节点一定是根节点右子树上的某个节点,根节点的右子树节点可能很多,究竟插入到哪个位置呢?