简述动态规划之背包问题

概述:动态规划是研究多阶段决策过程优化问题的最优化原理。其核心是记忆化每一步决策的最优解(即dp状态转移方程)。
该类问题特点:
(1)问题具有最优子结构;
(2)子问题重叠;
(3)无后效性(即后面的决策不会影响前面的状态)
背包问题是动态规划中最基本问题之一,常见的背包问题有:01背包,完全背包,多重背包。

01背包

问题模型:给定n件物品,背包最大容量为m,第i件物品体积为w[i],价值为v[i],求在背包容量范围内使装入的物品总价值最大。
算法核心:很容易想到,在第i次决策时,若背包剩余容量小于待放物品的体积,自然不能放;反之放不放取决于放入该物品时的最大价值与不放时最大价值谁更大。
(1)常规存储(二维数组)核心代码

for(int i=1;i<=n;i++){
	for(int j=1;j<=m;j++){
		if(j>=w[i]) dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);//剩余容量足够的情况 
		else dp[i][j]=dp[i-1][j];
	}
}

(2)(二维变一维)空间优化:由二维情况我们可知下一次决策只与上一次的存储结果有关,故逆向枚举

for(int i=1;i<=n;i++){
	for(int j=m;j>=w[i];j--){
		//利用滚动数组每次记录当前决策最优解
		dp[j]=max(dp[j-w[i]]+v[i],dp[j]); 
	}
}

完全背包

问题模型:在01背包的前提下多加了个每种物品无穷件的条件,其余条件保持不变。
(1)二维数组存储当下最优结果,相比01背包而言,只有状态转移方程发生改变。

//由于有无限件,所以不在转移到dp[i-1][j-w[i]],而是转移到dp[i][j-w[i]] 
dp[i][j]=max(dp[i-1][j],dp[i][j-w[i]]+v[i]);

(2)空间优化:与01原理不同,最优结果既与上次状态有关又与本次状态有关,故需正向枚举,确保能够利用本次再放置该物体前的最优解即dp[j-w[i]]。

for(int i=1;i<=n;i++){
	for(int j=w[i];j<=m;j++){//正向枚举 
		dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
	}
}

多重背包

问题模型:有n种物品,背包最大容量为m,第i种物品的体积为w[i],价值为v[i],个数为a[i],求在背包容量范围内能装入物品的最大价值。
算法思路:多重背包是加强版的01背包,可以将其朴素拆分成01背包问题求解。
(1)下面介绍一种朴素算法,即逐个拆分的思想(基本原理是转换为01)

for(int i=1;i<=n;i++){
	for(int j=0;j<=m;j++){
		for(int k=0;k<=a[i];k++){
			if(j>=w[i]*k) dp[i][j]=max(dp[i-1][j-w[i]*k]+v[i]*k,dp[i][j]);//构建的转移方程 
		}
	}
} 

(2)利用滚动数组做空间优化(核心代码)

for(int i=1;i<=n;i++){
	for(int j=m;j>=0;j--){
		for(int k=0;k<=a[i];k++){
			if(j>=w[i]*k) dp[j]=max(dp[j-w[i]*k]+v[i]*k,dp[j]);
		}
	}
} 

这是朴素算法,除此之外,还可以通过二进制拆分和单调队列等方法进行优化。
总结:背包问题大都是以01背包为基础导出的,解决此类问题关键在于寻找和构建dp状态转移方程,明确每次决策所依据的之前最优存储结果。

  • 9
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值