某兴趣小组有4名男生,5名女生.从中选派5名学生参加一次活动,要求必须2名男生,3名女生,且女生甲必须在内,有多少种选派方法?从中选派5名学生参加一次活动,要求有女生但人数必须少于男生,有多少种选派方法?分成三组,每组3人,有多少种不同的分法?
分析 (1)从4名男生选2名,从4女生选2人,根据分步计数原理可得,
(2)分两类,男4女1,男3女2,根据分类计数原理可得,
(3)分三类,第一类,(男3,女3,男1女2),第二类(男2女1,男2女1,女3),第三类(男2女1,男1女2,男1女2),根据分类和分步计数原理可得.
解答 解:(1)必须2名男生,3名女生,且女生甲必须在内,故有C42C42=36种;
(2)从中选派5名学生参加一次活动,要求有女生但人数必须少于男生,C44C51+C43C52=45种,
(3)分成三组,每组3人,第一类,(男3,女3,男1女2),第二类(男2女1,男2女1,女3),第三类(男2女1,男1女2,男1女2),
故有C43C53+C42C51C43+C42C51C41C42=860种.
点评 排列组合问题在实际问题中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件。