目录
技术栈
开发语言:Java 框架支持:springboot/ssm/springcloud 微服务分布式
JDK版本:JDK1.8
数据库:mysql (版本不限)
数据库工具:Navicat
开发软件:eclipse/myeclipse/idea
Maven包:Maven3.3.9
浏览器:谷歌浏览器
本系统(已开发完成)->成品实现截图
开发核心技术介绍
(1)Spring Boot是一个用于快速开发Java应用的开源框架,它简化了基于Spring Framework的应用开发过程。
(2)Spring框架提供了多种核心功能和丰富的附加功能,旨在简化Java应用程序的开发过程,提高代码的可维护性、可扩展性和灵活性。
(3)SpringMVC是一个基于MVC模式的轻量级Web开发框架,主要用于表示层的开发。它是Spring框架提供的一整套解决方案,用于构建Web应用程序。SpringMVC需要Spring框架的支持才能运行,它为表示层开发提供了全面的功能模块。
(4)MyBatis-Plus是一个基于MyBatis的增强工具,旨在简化开发过程,提高开发效率。它通过提供一系列强大的功能,帮助开发者更专注于业务逻辑的实现,而不是过多关注SQL配置和编写。
(5)MySQL是一种开源的关系型数据库管理系统(RDBMS),主要用于存储、管理和检索数据。
(6)Maven是一个项目管理及自动构建工具,主要用于Java编程项目。
(7)Nginx是一个开源的轻量级Web服务器、反向代理服务器及电子邮件代理服务器
可开发功能创新亮点之网络爬虫
网络爬虫:可以对对应网站爬取出对应的数据内容: 本研究将采用Hadoop技术对XXX数据进行爬取和存储,并利用可视化技术对数据进行深入分析和展示。首先爬取XXX网站的数据,用Hadoop的MapReduce框架进行并行数据处理,实现大规模数据的快速获取和存储,其次对爬取的数据进行清洗、去重、格式转换等预处理操作,提高数据质量,并将处理后的数据存储在Hadoop分布式文件系统中。利用Hadoop的Hive数据仓库工具进行数据分析,包括数据聚合、趋势预测等,以提取有价值的信息,利用如Python的Matplotlib、Seaborn等可视化工具,将数据分析结果以图表、仪表板等形式进行展示,以便顾客更直观地了解xxx市场情况。
#源码获取详细视频演示:文章底部获取博主联系方式!!!!
本系统包修改时间和标题(就是把系统的标题改成你的毕设题目哦),包安装部署运行调试,就是在你的电脑上运行起来
可开发功能创新亮点之深度学习之LSTM算法
深度学习之LSTM算法:使用场景:进行时间序列的预测,主要进行未来数据的预测,比如预测未来多少天的天气情况等几点:
金融市场预测:LSTM可用于预测股票价格、汇率、交易量等金融指标的未来走势。通过分析历史交易数据,LSTM能够捕捉市场趋势和波动,为投资者提供决策支持。
销售预测:在零售和电商领域,LSTM可以根据历史销售数据预测未来一段时间内的销售量、库存需求等,帮助企业进行供应链管理和库存优化。
情感分析:通过分析文本数据中的情感倾向,LSTM可以对文本进行情感分类,判断其是正面、负面还是中性情感,这在社交媒体分析、品牌监测等领域具有重要应用价值
疾病预测:利用患者的历史医疗记录、生活习惯等数据,LSTM可以预测患者未来患某种疾病的风险。
可开发功能创新亮点之情感分析
情感分析 针对通用场景下带有主观描述的中文文本,自动判断该文本的情感极性类别并给出相应的置信度,情感极性分为积极、消极、中性
可开发功能创新亮点之机器学习之决策树算法
机器学习之决策树算法:使用场景:一般用于有分类性质的项目预测、医学诊断、金融领域、市场营销、人脸识别、数据分析与预测等,比如根据数据判断是不是某种动物,是不是优质客户。
决策树(Decision Tree)是机器学习领域中一种极具代表性的算法,主要用于解决分类和回归问题,通过递归分割数据构建树形结构用于分类或回归任务 决策树是一种树形结构,其中每个内部节点表示一个特征(或属性),每个分支表示一个特征取值的判断条件,而每个叶子节点表示一个类别(对于分类问题)或者一个数值(对于回归问题)。通过对特征的逐层划分,决策树可以对数据进行分类或者预测。
可开发功能创新亮点之协同过滤算法
协同过滤算法(Collaborative Filtering, CF)是一种广泛应用的推荐算法,它通过分析和挖掘顾客的历史行为数据,发现顾客之间的相似性或者物品之间的相似性,从而为顾客推荐他们可能感兴趣的物品。我们所使用的协同过滤算法是基于顾客的协同过滤(User-Based Collaborative Filtering, UserCF),它的原理是首先计算顾客之间的相似度,然后根据相似顾客的行为和评分来预测目标顾客对未评分物品的兴趣程度。相似度计算方法:包括余弦相似度、皮尔逊相关系数、杰卡德相似系数等。
可开发功能创新亮点之机器学习之随机森林回归算法
机器学习之随机森林回归算法:随机森林回归算法是一种强大且灵活的机器学习算法,通过集成多个决策树的预测结果来提高模型的性能。它在处理大规模数据集、高维数据以及非线性关系时表现出色,是机器学习领域的重要工具之一。该算法通过构建多个决策树,并将它们的预测结果进行集成,从而提高了模型的预测精度和稳定性。也是一种基于线性回归算法的优化进阶算法。
可开发功能创新亮点之机器学习之线性回归算法
机器学习之线性回归算法使用场景:市场营销、教育评估、人力资源管理、销售预测、交通规划等,线性回归算法因其简单性和有效性,在多个领域都有广泛应用,包括但不限于:
房价预测:通过分析房屋的各种特征(如面积、位置、装修等)来预测房价。
销售预测:基于历史销售数据和市场趋势来预测未来的销售额。
贷款额度评估:根据借款人的信用记录、收入情况等因素来评估贷款额度。
医疗健康:预测疾病风险、药物效果等。
金融市场:预测股票价格、汇率等。
员工培训时间与绩效关系:人力资源管理者可以利用线性回归模型分析员工培训时间与工作绩效之间的线性关系,以确定最有效的培训时长和方式。
工资与员工满意度关系:通过线性回归,可以研究工资水平对员工满意度的影响,帮助企业制定更具吸引力的薪酬政策。
可开发功能创新亮点之朴素贝叶斯算法
朴素贝叶斯算法:朴素贝叶斯算法的使用场景多种多样,包括但不限于以下几个领域:
文本分类:朴素贝叶斯算法在文本分类任务中表现出色,尤其是在新闻文章、情感分析等方面。通过对文本数据的特征提取和预处理,该算法能够有效地将文本归类到不同的类别中。
垃圾邮件过滤:朴素贝叶斯算法是垃圾邮件过滤的经典应用之一。通过学习邮件中的词汇出现频率,该算法能够预测新邮件是否为垃圾邮件,从而帮助顾客筛选出不必要的邮件。
医疗诊断:在医疗领域,朴素贝叶斯算法被用于疾病的预测和医学影像分析。例如,根据患者的症状和检查结果,该算法可以预测患者可能患有的疾病,或者帮助判断医学影像是否显示某种病变。
金融风险评估:金融机构可以利用朴素贝叶斯算法进行信用评估和金融市场预测。通过分析客户的个人信息和信用记录,该算法可以预测客户的信用风险等级;同时,也可以根据宏观经济数据和公司财务数据等特征,尝试预测金融市场的走势。
总的来说,朴素贝叶斯算法以其简单高效的特点,在多个领域展现出了出色的分类性能。然而,值得注意的是,尽管该算法在很多场景下表现良好,但其假设特征之间相互独立的前提在实际中往往不成立,因此在实际应用中需要根据具体任务对算法进行调整和优化。
操作手册
1、在运行项目之前,需要电脑配备运行环境,安装运行工具,包括MySQL 5.7/mysql8.0+、IDEA和Visual Studio Code。
在安装完成IDEA,导入后端代码文件,通过maven文件刷新下载依赖。导入项目后,检查application.yml的数据库连接配置正确,直接运行 springbootApplication.java文件。
2、对于前端顾客端front文件部分的启动,请按照一下步骤进行操作:前端运行:确保已安装Node,且版本在14.0以上。
使用npm install -g cnpm 来安装cnpm。执行cnpm install来安装依赖。在本地开发时,npm run server启动项目。通过访问http://localhost:8201/来访问顾客端系统。
3、对于前端管理端admin文件部分的启动:确保已安装Node,并且版本号在12.0以上。
使用npm install-g cnpm 来安装cnpm。执行cnpm install来安装依赖。通过访问:
后台路径地址:localhost:8080/项目名称/admin/dist/index.html 来访问后台管理系统。
前台路径地址:localhost:8080/项目名称/front/dist/index.html (无前台不需要输入)
管理员账号:admin 管理员密码:admin
4、按照上述步骤逐个启动后端服务和前端项目。这将确保项目的顺利运行,并能够通过相应的地址和端口访问后端服务和前端界面[18]
核心代码部分展示
/**
* 登录相关
*/
@RequestMapping("users")
@RestController
public class UsersController{
@Autowired
private UsersService userService;
@Autowired
private TokenService tokenService;
/**
* 列表
*/
@RequestMapping("/page")
public R page(@RequestParam Map<String, Object> params,UsersEntity user){
EntityWrapper<UsersEntity> ew = new EntityWrapper<UsersEntity>();
PageUtils page = userService.queryPage(params, MPUtil.sort(MPUtil.between(MPUtil.allLike(ew, user), params), params));
return R.ok().put("data", page);
}
/**
* 登录
*/
@IgnoreAuth
@PostMapping(value = "/login")
public R login(String username, String password, String captcha, HttpServletRequest request) {
UsersEntity user = userService.selectOne(new EntityWrapper<UsersEntity>().eq("username", username));
if(user==null || !user.getPassword().equals(password)) {
return R.error("账号或密码不正确");
}
String token = tokenService.generateToken(user.getId(),username, "users", user.getRole());
return R.ok().put("token", token);
}
/**
* 注册
*/
@IgnoreAuth
@PostMapping(value = "/register")
public R register(@RequestBody UsersEntity user){
// ValidatorUtils.validateEntity(user);
if(userService.selectOne(new EntityWrapper<UsersEntity>().eq("username", user.getUsername())) !=null) {
return R.error("顾客已存在");
}
userService.insert(user);
return R.ok();
}
/**
* 退出
*/
@GetMapping(value = "logout")
public R logout(HttpServletRequest request) {
request.getSession().invalidate();
return R.ok("退出成功");
}
/**
* 密码重置
*/
@IgnoreAuth
@RequestMapping(value = "/resetPass")
public R resetPass(String username, HttpServletRequest request){
UsersEntity user = userService.selectOne(new EntityWrapper<UsersEntity>().eq("username", username));
if(user==null) {
return R.error("账号不存在");
}
user.setPassword("123456");
userService.update(user,null);
return R.ok("密码已重置为:123456");
}
视频演示/源码获取
需要成品,加我们的时候,记得把本页面标题截图发下我,方便查找相应的源代码。
如果你对本设计介绍不满意或者想获取更详细的信息
文章最下方名片联系我即可~
请联系我获取更详细的演示视频