kuangbin专题四 F 题 负权回路(POJ 3259 Wormholes)

POJ 3259 Wormholes

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input
Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).
Sample Input
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output
NO
YES
Hint
For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
 
题意 :

POJ 3259

农夫约翰在探索他的许多农场,发现了一些惊人的虫洞。虫洞是很奇特的,因为它是一个单向通道,可让你进入虫洞的前达到目的地!他的N(1≤N≤500)个农场被编号为1..N,之间有M(1≤M≤2500)条路径,W(1≤W≤200)个虫洞。FJ作为一个狂热的时间旅行的爱好者,他要做到以下几点:开始在一个区域,通过一些路径和虫洞旅行,他要回到最开时出发的那个区域出发前的时间。也许他就能遇到自己了:)。为了帮助FJ找出这是否是可以或不可以,他会为你提供F个农场的完整的映射到(1≤F≤5)。所有的路径所花时间都不大于10000秒,所有的虫洞都不大于万秒的时间回溯。

 

输入

第1行:一个整数F表示接下来会有F个农场说明。

每个农场第一行:分别是三个空格隔开的整数:N,M和W

第2行到M+1行:三个空格分开的数字(S,E,T)描述,分别为:需要T秒走过S和E之间的双向路径。两个区域可能由一个以上的路径来连接。

第M +2到M+ W+1行:三个空格分开的数字(S,E,T)描述虫洞,描述单向路径,S到E且回溯T秒。

 

思路:判断是否存在负权回路,存在输出 YES 否则输出 NO

题意是问是否能通过虫洞回到过去;

虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。

我们把虫洞看成是一条负权路,问题就转化成求一个图中是否存在负权回路;

1.bellman_ford算法

Bellman-Ford算法流程分为三个阶段:

(1)初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;

(2)迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)

(3)检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点

v的最短距离保存在 d[v]中。

2.spfa算法

我们都知道spfa算法是对bellman算法的优化,那么如何用spfa算法来判断负权回路呢?我们考虑一个节点入队的条件是什么,只有那些在前一遍松弛中改变了距离估计值的点,才可能引起他们的邻接点的距离估计值的改变。因此,用一个先进先出的队列来存放被成功松弛的顶点。同样,我们有这样的定理:“两点间如果有最短路,那么每个结点最多经过一次。也就是说,这条路不超过n-1条边。”(如果一个结点经过了两次,那么我们走了一个圈。如果这个圈的权为正,显然不划算;如果是负圈,那么最短路不存在;如果是零圈,去掉不影响最优值)。也就是说,每个点最多入队n-1次(这里比较难理解,需要仔细体会,n-1只是一种最坏情况,实际中,这样会很大程度上影响程序的效率)。

有了上面的基础,思路就很显然了,加开一个数组记录每个点入队的次数(num),然后,判断当前入队的点的入队次数,如果大于n-1,则说明存在负权回路。

 
1.floyd实现
/*
Source Code
Problem: 3259        User: 201616040106
Memory: 1384K        Time: 1688MS
Language: C++        Result: Accepted
*/

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std ;

#define maxn 600
#define inf 99999999
int mapp[maxn][maxn] ;

int F ;
int n , m , w ;
int s , e , t ;

bool floyd(){
    int k , i , j  , T;
    for(k=1 ; k<=n ; k++){
        for(i=1 ;  i<= n ; i++){
            for(j=1 ; j<=n ; j++){
                T = mapp[i][k] + mapp[k][j] ;
                if(mapp[i][j] > T )
                    mapp[i][j] = T ;
            }
            //
            if(mapp[i][i] < 0 ){
                return true ;
            }

        }
    }
    return false ;
}

int main(){

    while(~scanf("%d" , &F)) {

        while(F--){
            scanf("%d%d%d" , &n , &m , &w) ;
            // 初始化 mapp数组
            for(int i=1 ; i<= n ; i++){
                for(int j=1 ; j<=n ; j++){
                    if(i == j ) mapp[i][j] = 0 ;
                    else mapp[i][j] = inf ;
                }
            }
            // 地图 两点可以有多条双向边
            for(int i=1 ; i<=m ; i++){
                scanf("%d%d%d" , &s , &e , &t) ;
                if(t < mapp[s][e] )
                    mapp[s][e] = mapp[e][s] = t ;
            }
            // 虫洞
            for(int i=1 ; i<= w ; i++){
                scanf("%d%d%d" , &s , &e , &t) ;
                mapp[s][e] = -t ;
            }

            if(floyd()){
                printf("YES\n") ;
            } else {
                printf("NO\n") ;
            }
        }
    }

    return 0 ;
}

 2.1bellman_ford 实现

Source Code
Problem: 3259        User: 201616040106
Memory: 268K        Time: 141MS
Language: C++        Result: Accepted

    Source Code

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>

    using namespace std ;

    #define maxn 600
    #define inf 99999999
    int total ;
    int dis[maxn] ;

    struct node {
        int u ,
            v ;
        int w ;

    };
    node bian[10*maxn] ;

    void add(int u , int v , int c ){

        bian[total].u = u ;
        bian[total].v = v ;
        bian[total].w = c ;
        total ++ ;
    }

    bool bellman_ford(int n ){

        for(int i=1 ; i<=n ; i++){
            dis[i] = inf ;
        }
        dis[1] = 0 ;

 
        for(int j=1 ; j<=n-1 ; j++){
            for(int i=0 ;  i<total ; i++){
                if(dis[bian[i].v] > dis[bian[i].u] + bian[i].w){
                    dis[bian[i].v] = dis[bian[i].u] + bian[i].w ;
                    
                }
            }

        }


        for(int i=0 ; i<total ; i++){
            // 存在 负权回路 dis[bian[i].v] 是上面计算过的
            // dis[bian[i].u] + bian[i].w 是再次计算的  再次计算更小 存在负权回路
            if(dis[bian[i].v] > dis[bian[i].u] + bian[i].w){
                return true ;
            }
        }
        return false ;
    }

    int main(){

        int F ;
        int n , m , w ;
        int s , e , t ;

        while(~scanf("%d" , &F)){
            while(F--){
                scanf("%d%d%d" , &n , &m , &w) ;
                total = 0 ;
                for(int i=1 ; i<=m ; i++){
                    scanf("%d%d%d" , &s , &e , &t) ;
                    add(s , e , t ) ;
                    add(e , s , t ) ;
                }

                for(int i=1 ; i<=w ; i++){
                    scanf("%d%d%d" , &s , &e , &t ) ;
                    add(s , e , -t) ;
                }

                if(bellman_ford(n)){
                    printf("YES\n") ;
                } else {
                    printf("NO\n") ;
                }
            }
        }

        return 0 ;
    }

2.2bellman_ford (小优化)

Source Code
Problem: 3259        User: 201616040106
Memory: 268K        Time: 125MS
Language: C++        Result: Accepted

    Source Code

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>

    using namespace std ;

    #define maxn 600
    #define inf 99999999
    int total ;
    int dis[maxn] ;

    struct node {
        int u ,
            v ;
        int w ;

    };
    node bian[10*maxn] ;

    void add(int u , int v , int c ){

        bian[total].u = u ;
        bian[total].v = v ;
        bian[total].w = c ;
        total ++ ;
    }

    bool bellman_ford(int n ){

        for(int i=1 ; i<=n ; i++){
            dis[i] = inf ;
        }
        dis[1] = 0 ;

        bool flag = false ;
        for(int j=1 ; j<=n-1 ; j++){
            for(int i=0 ;  i<total ; i++){
                if(dis[bian[i].v] > dis[bian[i].u] + bian[i].w){
                    dis[bian[i].v] = dis[bian[i].u] + bian[i].w ;
                    flag = true ;
                }
            }
            if(!flag){
                return false ;
            }
        }


        for(int i=0 ; i<total ; i++){
            // 存在 负权回路 dis[bian[i].v] 是上面计算过的
            // dis[bian[i].u] + bian[i].w 是再次计算的  再次计算更小 存在负权回路
            if(dis[bian[i].v] > dis[bian[i].u] + bian[i].w){
                return true ;
            }
        }
        return false ;
    }

    int main(){

        int F ;
        int n , m , w ;
        int s , e , t ;

        while(~scanf("%d" , &F)){
            while(F--){
                scanf("%d%d%d" , &n , &m , &w) ;
                total = 0 ;
                for(int i=1 ; i<=m ; i++){
                    scanf("%d%d%d" , &s , &e , &t) ;
                    add(s , e , t ) ;
                    add(e , s , t ) ;
                }

                for(int i=1 ; i<=w ; i++){
                    scanf("%d%d%d" , &s , &e , &t ) ;
                    add(s , e , -t) ;
                }

                if(bellman_ford(n)){
                    printf("YES\n") ;
                } else {
                    printf("NO\n") ;
                }
            }
        }

        return 0 ;
    }

3. spfa(引用)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <queue>
#include <algorithm>
using namespace std;
#define N 5210
#define INF 0xfffffff

int cnt, dist[N], Head[N], num[N], vis[N];
int n, m, w;

struct Edge
{
    int v, w, next;
}e[N];

void Add(int u, int v, int w)
{
    e[cnt].v = v;
    e[cnt].w = w;
    e[cnt].next = Head[u];
    Head[u] = cnt++;
}

bool spfa()///spfa模板;
{
    memset(vis, 0, sizeof(vis));
    memset(num, 0, sizeof(num));
    queue<int>Q;
    vis[1] = 1;
    dist[1] = 0;
    Q.push(1);
    num[1]++;
    while(Q.size())
    {
        int p=Q.front();
        Q.pop();
        vis[p] = 0;
        for(int i=Head[p]; i!=-1; i=e[i].next)
        {
            int q = e[i].v;
            if(dist[q] > dist[p] + e[i].w)
            {
                dist[q] = dist[p] + e[i].w;
                if(!vis[q])
                {
                    vis[q] = 1;
                    Q.push(q);
                    num[q] ++;
                    if(num[q]>n)
                        return true;
                }
            }
        }
    }
    return false;
}

int main()
{
    int T, a, b, c;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d%d%d", &n, &m, &w);

        cnt = 0;
        memset(Head, -1, sizeof(Head));
        for(int i=1; i<=n; i++)
            dist[i] = INF;

        for(int i=1; i<=m; i++)
        {
            scanf("%d%d%d", &a, &b, &c);
            Add(a, b, c);
            Add(b, a, c);
        }
        for(int i=1; i<=w; i++)
        {
            scanf("%d%d%d", &a, &b, &c);
            Add(a, b, -c);
        }

        if( spfa() )///存在负环;
            printf("YES\n");
        else
            printf("NO\n");
    }
    return 0;
}

 

 

转载于:https://www.cnblogs.com/yi-ye-zhi-qiu/p/7775448.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值