POJ 3259 Wormholes
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8Sample Output
NO YESHint
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
POJ 3259
农夫约翰在探索他的许多农场,发现了一些惊人的虫洞。虫洞是很奇特的,因为它是一个单向通道,可让你进入虫洞的前达到目的地!他的N(1≤N≤500)个农场被编号为1..N,之间有M(1≤M≤2500)条路径,W(1≤W≤200)个虫洞。FJ作为一个狂热的时间旅行的爱好者,他要做到以下几点:开始在一个区域,通过一些路径和虫洞旅行,他要回到最开时出发的那个区域出发前的时间。也许他就能遇到自己了:)。为了帮助FJ找出这是否是可以或不可以,他会为你提供F个农场的完整的映射到(1≤F≤5)。所有的路径所花时间都不大于10000秒,所有的虫洞都不大于万秒的时间回溯。
输入
第1行:一个整数F表示接下来会有F个农场说明。
每个农场第一行:分别是三个空格隔开的整数:N,M和W
第2行到M+1行:三个空格分开的数字(S,E,T)描述,分别为:需要T秒走过S和E之间的双向路径。两个区域可能由一个以上的路径来连接。
第M +2到M+ W+1行:三个空格分开的数字(S,E,T)描述虫洞,描述单向路径,S到E且回溯T秒。
思路:判断是否存在负权回路,存在输出 YES 否则输出 NO
题意是问是否能通过虫洞回到过去;
虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。
我们把虫洞看成是一条负权路,问题就转化成求一个图中是否存在负权回路;
1.bellman_ford算法
Bellman-Ford算法流程分为三个阶段:
(1)初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;
(2)迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
(3)检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点
v的最短距离保存在 d[v]中。
2.spfa算法
我们都知道spfa算法是对bellman算法的优化,那么如何用spfa算法来判断负权回路呢?我们考虑一个节点入队的条件是什么,只有那些在前一遍松弛中改变了距离估计值的点,才可能引起他们的邻接点的距离估计值的改变。因此,用一个先进先出的队列来存放被成功松弛的顶点。同样,我们有这样的定理:“两点间如果有最短路,那么每个结点最多经过一次。也就是说,这条路不超过n-1条边。”(如果一个结点经过了两次,那么我们走了一个圈。如果这个圈的权为正,显然不划算;如果是负圈,那么最短路不存在;如果是零圈,去掉不影响最优值)。也就是说,每个点最多入队n-1次(这里比较难理解,需要仔细体会,n-1只是一种最坏情况,实际中,这样会很大程度上影响程序的效率)。
有了上面的基础,思路就很显然了,加开一个数组记录每个点入队的次数(num),然后,判断当前入队的点的入队次数,如果大于n-1,则说明存在负权回路。
/* Source Code Problem: 3259 User: 201616040106 Memory: 1384K Time: 1688MS Language: C++ Result: Accepted */ #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std ; #define maxn 600 #define inf 99999999 int mapp[maxn][maxn] ; int F ; int n , m , w ; int s , e , t ; bool floyd(){ int k , i , j , T; for(k=1 ; k<=n ; k++){ for(i=1 ; i<= n ; i++){ for(j=1 ; j<=n ; j++){ T = mapp[i][k] + mapp[k][j] ; if(mapp[i][j] > T ) mapp[i][j] = T ; } // if(mapp[i][i] < 0 ){ return true ; } } } return false ; } int main(){ while(~scanf("%d" , &F)) { while(F--){ scanf("%d%d%d" , &n , &m , &w) ; // 初始化 mapp数组 for(int i=1 ; i<= n ; i++){ for(int j=1 ; j<=n ; j++){ if(i == j ) mapp[i][j] = 0 ; else mapp[i][j] = inf ; } } // 地图 两点可以有多条双向边 for(int i=1 ; i<=m ; i++){ scanf("%d%d%d" , &s , &e , &t) ; if(t < mapp[s][e] ) mapp[s][e] = mapp[e][s] = t ; } // 虫洞 for(int i=1 ; i<= w ; i++){ scanf("%d%d%d" , &s , &e , &t) ; mapp[s][e] = -t ; } if(floyd()){ printf("YES\n") ; } else { printf("NO\n") ; } } } return 0 ; }
2.1bellman_ford 实现
Source Code Problem: 3259 User: 201616040106 Memory: 268K Time: 141MS Language: C++ Result: Accepted Source Code #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std ; #define maxn 600 #define inf 99999999 int total ; int dis[maxn] ; struct node { int u , v ; int w ; }; node bian[10*maxn] ; void add(int u , int v , int c ){ bian[total].u = u ; bian[total].v = v ; bian[total].w = c ; total ++ ; } bool bellman_ford(int n ){ for(int i=1 ; i<=n ; i++){ dis[i] = inf ; } dis[1] = 0 ; for(int j=1 ; j<=n-1 ; j++){ for(int i=0 ; i<total ; i++){ if(dis[bian[i].v] > dis[bian[i].u] + bian[i].w){ dis[bian[i].v] = dis[bian[i].u] + bian[i].w ; } } } for(int i=0 ; i<total ; i++){ // 存在 负权回路 dis[bian[i].v] 是上面计算过的 // dis[bian[i].u] + bian[i].w 是再次计算的 再次计算更小 存在负权回路 if(dis[bian[i].v] > dis[bian[i].u] + bian[i].w){ return true ; } } return false ; } int main(){ int F ; int n , m , w ; int s , e , t ; while(~scanf("%d" , &F)){ while(F--){ scanf("%d%d%d" , &n , &m , &w) ; total = 0 ; for(int i=1 ; i<=m ; i++){ scanf("%d%d%d" , &s , &e , &t) ; add(s , e , t ) ; add(e , s , t ) ; } for(int i=1 ; i<=w ; i++){ scanf("%d%d%d" , &s , &e , &t ) ; add(s , e , -t) ; } if(bellman_ford(n)){ printf("YES\n") ; } else { printf("NO\n") ; } } } return 0 ; }
2.2bellman_ford (小优化)
Source Code Problem: 3259 User: 201616040106 Memory: 268K Time: 125MS Language: C++ Result: Accepted Source Code #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std ; #define maxn 600 #define inf 99999999 int total ; int dis[maxn] ; struct node { int u , v ; int w ; }; node bian[10*maxn] ; void add(int u , int v , int c ){ bian[total].u = u ; bian[total].v = v ; bian[total].w = c ; total ++ ; } bool bellman_ford(int n ){ for(int i=1 ; i<=n ; i++){ dis[i] = inf ; } dis[1] = 0 ; bool flag = false ; for(int j=1 ; j<=n-1 ; j++){ for(int i=0 ; i<total ; i++){ if(dis[bian[i].v] > dis[bian[i].u] + bian[i].w){ dis[bian[i].v] = dis[bian[i].u] + bian[i].w ; flag = true ; } } if(!flag){ return false ; } } for(int i=0 ; i<total ; i++){ // 存在 负权回路 dis[bian[i].v] 是上面计算过的 // dis[bian[i].u] + bian[i].w 是再次计算的 再次计算更小 存在负权回路 if(dis[bian[i].v] > dis[bian[i].u] + bian[i].w){ return true ; } } return false ; } int main(){ int F ; int n , m , w ; int s , e , t ; while(~scanf("%d" , &F)){ while(F--){ scanf("%d%d%d" , &n , &m , &w) ; total = 0 ; for(int i=1 ; i<=m ; i++){ scanf("%d%d%d" , &s , &e , &t) ; add(s , e , t ) ; add(e , s , t ) ; } for(int i=1 ; i<=w ; i++){ scanf("%d%d%d" , &s , &e , &t ) ; add(s , e , -t) ; } if(bellman_ford(n)){ printf("YES\n") ; } else { printf("NO\n") ; } } } return 0 ; }
3. spfa(引用)
#include <iostream> #include <cstdio> #include <cstring> #include <stdlib.h> #include <math.h> #include <queue> #include <algorithm> using namespace std; #define N 5210 #define INF 0xfffffff int cnt, dist[N], Head[N], num[N], vis[N]; int n, m, w; struct Edge { int v, w, next; }e[N]; void Add(int u, int v, int w) { e[cnt].v = v; e[cnt].w = w; e[cnt].next = Head[u]; Head[u] = cnt++; } bool spfa()///spfa模板; { memset(vis, 0, sizeof(vis)); memset(num, 0, sizeof(num)); queue<int>Q; vis[1] = 1; dist[1] = 0; Q.push(1); num[1]++; while(Q.size()) { int p=Q.front(); Q.pop(); vis[p] = 0; for(int i=Head[p]; i!=-1; i=e[i].next) { int q = e[i].v; if(dist[q] > dist[p] + e[i].w) { dist[q] = dist[p] + e[i].w; if(!vis[q]) { vis[q] = 1; Q.push(q); num[q] ++; if(num[q]>n) return true; } } } } return false; } int main() { int T, a, b, c; scanf("%d", &T); while(T--) { scanf("%d%d%d", &n, &m, &w); cnt = 0; memset(Head, -1, sizeof(Head)); for(int i=1; i<=n; i++) dist[i] = INF; for(int i=1; i<=m; i++) { scanf("%d%d%d", &a, &b, &c); Add(a, b, c); Add(b, a, c); } for(int i=1; i<=w; i++) { scanf("%d%d%d", &a, &b, &c); Add(a, b, -c); } if( spfa() )///存在负环; printf("YES\n"); else printf("NO\n"); } return 0; }