sklearn.cluster.Kmeans解析

sklearn.cluster.KMeans(n_clusters=8,init='k-means++',n_init=10,

        max_iter=300, tol=0.0001, precompute_distances='auto',verbose=0,

        random_state=None, copy_x=True,n_jobs=1,algorithm='auto')

n_clusters: 生成类别数, int, optional, default: 8.

init: 初始化方法, 默认为‘k-means++,可选{‘k-means++’, ‘random’ or an ndarray}.

n_init: ‘auto’ or int, default=’auto’ (When n_init='auto', the number of runs depends on the value of init: 10 if using init='random' or init is a callable; 1 if using init='k-means++' or init is an array-like).

max_iter: 最大循环次数, int, default: 300.

tol: 判断收敛参数, float, default: 1e-4.

precompute_distances: 预先计算距离并存储,可选{‘auto’, True, False},其中 ‘auto’:如果 n_samples * n_clusters > 12 million则不计算。

verbose:Verbosity模式, int, default 0

random_state: int, RandomState instance or None, optional, default: None (random number generator is the RandomState instance used by np.random)

copy_x: boolean, default True (the original data is not modified)

n_jobs: 设置parallel

algorithm : “auto”, “full”(classical EM-style) or “elkan”(triangle inequality), default=”auto”(chooses “elkan” for dense data and “full” for sparse data)

Examples:

from sklearn.cluster import KMeans

import numpy as np

X = np.array([[0, 0], [0, 2], [-1, 1], [1, 1],

                        [4, 0], [4, 2], [3, 1], [5, 1]])

kmeans = KMeans(n_clusters=2, random_state=0).fit(X)

print(kmeans.labels_)

# [1 1 1 1 0 0 0 0]

print(kmeans.predict([[0, -1], [4, 4]]))

# [1 0]

print(kmeans.cluster_centers_)

# [[4. 1.]

# [0. 1.]]

本程序是在python中完成,基于sklearn.cluster中的k-means聚类包来实现数据的聚类,对于里面使用的数据格式如下:(注意更改程序中的相关参数) 138 0 124 1 127 2 129 3 119 4 127 5 124 6 120 7 123 8 147 9 188 10 212 11 229 12 240 13 240 14 241 15 240 16 242 17 174 18 130 19 132 20 119 21 48 22 37 23 49 0 42 1 34 2 26 3 20 4 21 5 23 6 13 7 19 8 18 9 36 10 25 11 20 12 19 13 19 14 5 15 29 16 22 17 13 18 46 19 15 20 8 21 33 22 41 23 69 0 56 1 49 2 40 3 52 4 62 5 54 6 32 7 38 8 44 9 55 10 70 11 74 12 105 13 107 14 56 15 55 16 65 17 100 18 195 19 136 20 87 21 64 22 77 23 61 0 53 1 47 2 33 3 34 4 28 5 41 6 40 7 38 8 33 9 26 10 31 11 31 12 13 13 17 14 17 15 25 16 17 17 17 18 14 19 16 20 17 21 29 22 44 23 37 0 32 1 34 2 26 3 23 4 25 5 25 6 27 7 30 8 25 9 17 10 12 11 12 12 12 13 7 14 6 15 6 16 12 17 12 18 39 19 34 20 32 21 34 22 35 23 33 0 57 1 81 2 77 3 68 4 61 5 60 6 56 7 67 8 102 9 89 10 62 11 57 12 57 13 64 14 62 15 69 16 81 17 77 18 64 19 62 20 79 21 75 22 57 23 73 0 88 1 75 2 70 3 77 4 73 5 72 6 76 7 76 8 74 9 98 10 90 11 90 12 85 13 79 14 79 15 88 16 88 17 81 18 84 19 89 20 79 21 68 22 55 23 63 0 62 1 58 2 58 3 56 4 60 5 56 6 56 7 58 8 56 9 65 10 61 11 60 12 60 13 61 14 65 15 55 16 56 17 61 18 64 19 69 20 83 21 87 22 84 23 41 0 35 1 38 2 45 3 44 4 49 5 55 6 47 7 47 8 29 9 14 10 12 11 4 12 10 13 9 14 7 15 7 16 11 17 12 18 14 19 22 20 29 21 23 22 33 23 34 0 38 1 38 2 37 3 37 4 34 5 24 6 47 7 70 8 41 9 6 10 23 11 4 12 15 13 3 14 28 15 17 16 31 17 39 18 42 19 54 20 47 21 68 22
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值