sklearn.cluster.
KMeans(n_clusters=8,init='k-means++',n_init=10,max_iter=300, tol=0.0001, precompute_distances='auto',verbose=0,
random_state=None, copy_x=True,n_jobs=1,algorithm='auto')
n_clusters: 生成类别数, int, optional, default: 8.
init: 初始化方法, 默认为‘k-means++,可选{‘k-means++’, ‘random’ or an ndarray}.
n_init: ‘auto’ or int, default=’auto’ (When
n_init='auto'
, the number of runs depends on the value of init: 10 if usinginit='random'
orinit
is a callable; 1 if usinginit='k-means++'
orinit
is an array-like).max_iter: 最大循环次数, int, default: 300.
tol: 判断