Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
和62题一致,在转移的时候加一个特判条件,只有是空地的时候才转移。http://blog.csdn.net/accepthjp/article/details/52585069
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if(obstacleGrid.size()==0) return 0;
vector<int> row(obstacleGrid[0].size()+1,0);
vector<vector<int>> dp(obstacleGrid.size()+1,row);
dp[0][1]=1;
for(int i=1;i<=obstacleGrid.size();i++)
for(int j=1;j<=obstacleGrid[0].size();j++)
if(obstacleGrid[i-1][j-1]==0)
dp[i][j]=dp[i-1][j]+dp[i][j-1];
return dp[obstacleGrid.size()][obstacleGrid[0].size()];
}
};