# 【深度学习】使用tensorflow实现AlexNet

AlexNet是2012年ImageNet比赛的冠军，虽然过去了很长时间，但是作为深度学习中的经典模型，AlexNet不但有助于我们理解其中所使用的很多技巧，而且非常有助于提升我们使用深度学习工具箱的熟练度。尤其是我刚入门深度学习，迫切需要一个能让自己熟悉tensorflow的小练习，于是就有了这个小玩意儿......

def maxPoolLayer(x, kHeight, kWidth, strideX, strideY, name, padding = "SAME"):
"""max-pooling"""
return tf.nn.max_pool(x, ksize = [1, kHeight, kWidth, 1],
strides = [1, strideX, strideY, 1], padding = padding, name = name)

def dropout(x, keepPro, name = None):
"""dropout"""
return tf.nn.dropout(x, keepPro, name)

def LRN(x, R, alpha, beta, name = None, bias = 1.0):
"""LRN"""
return tf.nn.local_response_normalization(x, depth_radius = R, alpha = alpha,
beta = beta, bias = bias, name = name)

def fcLayer(x, inputD, outputD, reluFlag, name):
"""fully-connect"""
with tf.variable_scope(name) as scope:
w = tf.get_variable("w", shape = [inputD, outputD], dtype = "float")
b = tf.get_variable("b", [outputD], dtype = "float")
out = tf.nn.xw_plus_b(x, w, b, name = scope.name)
if reluFlag:
return tf.nn.relu(out)
else:
return out

def convLayer(x, kHeight, kWidth, strideX, strideY,
featureNum, name, padding = "SAME", groups = 1):#group为2时等于AlexNet中分上下两部分
"""convlutional"""
channel = int(x.get_shape()[-1])#获取channel
conv = lambda a, b: tf.nn.conv2d(a, b, strides = [1, strideY, strideX, 1], padding = padding)#定义卷积的匿名函数
with tf.variable_scope(name) as scope:
w = tf.get_variable("w", shape = [kHeight, kWidth, channel/groups, featureNum])
b = tf.get_variable("b", shape = [featureNum])

xNew = tf.split(value = x, num_or_size_splits = groups, axis = 3)#划分后的输入和权重
wNew = tf.split(value = w, num_or_size_splits = groups, axis = 3)

featureMap = [conv(t1, t2) for t1, t2 in zip(xNew, wNew)] #分别提取feature map
mergeFeatureMap = tf.concat(axis = 3, values = featureMap) #feature map整合
# print mergeFeatureMap.shape
return tf.nn.relu(tf.reshape(out, mergeFeatureMap.get_shape().as_list()), name = scope.name) #relu后的结果

class alexNet(object):
"""alexNet model"""
def __init__(self, x, keepPro, classNum, skip, modelPath = "bvlc_alexnet.npy"):
self.X = x
self.KEEPPRO = keepPro
self.CLASSNUM = classNum
self.SKIP = skip
self.MODELPATH = modelPath
#build CNN
self.buildCNN()

def buildCNN(self):
"""build model"""
conv1 = convLayer(self.X, 11, 11, 4, 4, 96, "conv1", "VALID")
lrn1 = LRN(conv1, 2, 2e-05, 0.75, "norm1")
pool1 = maxPoolLayer(lrn1, 3, 3, 2, 2, "pool1", "VALID")

conv2 = convLayer(pool1, 5, 5, 1, 1, 256, "conv2", groups = 2)
lrn2 = LRN(conv2, 2, 2e-05, 0.75, "lrn2")
pool2 = maxPoolLayer(lrn2, 3, 3, 2, 2, "pool2", "VALID")

conv3 = convLayer(pool2, 3, 3, 1, 1, 384, "conv3")

conv4 = convLayer(conv3, 3, 3, 1, 1, 384, "conv4", groups = 2)

conv5 = convLayer(conv4, 3, 3, 1, 1, 256, "conv5", groups = 2)
pool5 = maxPoolLayer(conv5, 3, 3, 2, 2, "pool5", "VALID")

fcIn = tf.reshape(pool5, [-1, 256 * 6 * 6])
fc1 = fcLayer(fcIn, 256 * 6 * 6, 4096, True, "fc6")
dropout1 = dropout(fc1, self.KEEPPRO)

fc2 = fcLayer(dropout1, 4096, 4096, True, "fc7")
dropout2 = dropout(fc2, self.KEEPPRO)

self.fc3 = fcLayer(dropout2, 4096, self.CLASSNUM, True, "fc8")

wDict = np.load(self.MODELPATH, encoding = "bytes").item()
#for layers in model
for name in wDict:
if name not in self.SKIP:
with tf.variable_scope(name, reuse = True):
for p in wDict[name]:
if len(p.shape) == 1:
#bias
sess.run(tf.get_variable('b', trainable = False).assign(p))
else:
#weights
sess.run(tf.get_variable('w', trainable = False).assign(p))

buildCNN函数完全按照alexnet的结构搭建网络。

ImageNet训练的AlexNet有很多类，几乎包含所有常见的物体，因此我们随便从网上找几张图片测试。比如我直接用了之前做项目的渣土车图片：

#some params
dropoutPro = 1
classNum = 1000
skip = []
#get testImage
testPath = "testModel"
testImg = []
for f in os.listdir(testPath):

imgMean = np.array([104, 117, 124], np.float)
x = tf.placeholder("float", [1, 227, 227, 3])

model = alexnet.alexNet(x, dropoutPro, classNum, skip)
score = model.fc3
softmax = tf.nn.softmax(score)

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

for i, img in enumerate(testImg):
#img preprocess
test = cv2.resize(img.astype(np.float), (227, 227)) #resize成网络输入大小
test -= imgMean #去均值
test = test.reshape((1, 227, 227, 3)) #拉成tensor
maxx = np.argmax(sess.run(softmax, feed_dict = {x: test}))
res = caffe_classes.class_names[maxx] #取概率最大类的下标
#print(res)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, res, (int(img.shape[0]/3), int(img.shape[1]/3)), font, 1, (0, 255, 0), 2)#绘制类的名字
cv2.imshow("demo", img)
cv2.waitKey(5000) #显示5秒

12-28

07-23 1131
06-11 1万+
11-22 7179
03-20 7324
02-26 439
05-02 3万+
06-24 2万+
11-23 1万+
09-26 124
07-09 790
05-11 2918