一个例子搞懂softmax regression

softmax regression简介

logistic regression (LR) 常用于二分类问题。对于多分类问题,使用softmax regression (SMR) 则是一个更好的选择,SMR也是逻辑回归在多分类问题上的一个推广。

下图分别显示了LR和SMR的训练过程和差别所在:
在这里插入图片描述

为了适应多分类问题,SMR使用softmax函数( Φ \Phi Φ)代替了原来的sigmoid函数。在SMR中,我们定义第 i i i个样本 X i X_i Xi属于类别 j j j的概率为:
P ( y = j ∣ X i ) = Φ ( z i ) = e z i j ∑ k = 0 K e z i k , (1) P(y=j|X_i)=\Phi (z_{i})=\frac{e^{z^j_{i}}}{\sum_{k=0}^Ke^{z^k_{i}}},\tag{1} P(y=jXi)=Φ(zi)=k=0Kezikezij,(1)
其中, z i j = w 0 j x 0 + w 1 j x 1 + . . . + w m j x m = ∑ l = 0 m w l j x l = W j T X i , (2) z^j_i=w^j_0 x_0+w^j_1 x_1+...+w^j_m x_m=\sum_{l=0}^m w_l^j x_l=W^T_jX_i, \tag{2} zij=w0jx0+w1jx1+...+wmjxm=l=0mwljxl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值