tf.reshape()的用法与理解

tf.reshape(tensor, shape, name=None)
函数的作用是将tensor变换为参数shape的形式。 其中shape为一个列表形式,特殊的一点是列表中可以存在-1。

转换为一般的shape(也就是不涉及-1的)我这里就不说了,主要说一下对-1的理解。
-1代表的含义是不用我们自己指定这一维的大小,函数会自动计算,但列表中只能存在一个-1。
(当然如果存在多个-1,就是一个存在多解的方程了)

我理解的要点是:首先shape就是reshape变换后的矩阵大小,先不管-1的那一个维度,先看其它维度,然后用原矩阵的总元素个数除以确定的维度,就能得到-1维度的值。

我们来看例子。

M=np.array([[[[1,2,3]]],[[[4,5,6]]],[[[7,8,9]]]])   #M是[3,1,1,3]的四维矩阵

我想把M重组成若干个3维的向量,那么直接tf.reshape(M,[-1,3])

那么会得到几个3维向量呢?  M一共有9个元素,9/3=3,那么得到3个三维向量,那么结果就是[3,3]的矩阵。

那么我想得到若干个[3,3]的矩阵,那么我们tf.reshape(M,[-1,3,3])

那么结果就是[1,3,3]的矩阵

按照TensorFlow2.11的写法修改这段代码:“class tgcnCell(RNN): """Temporal Graph Convolutional Network """ def call(self, inputs, **kwargs): pass def __init__(self, num_units, adj, num_nodes, input_size=None, act=tf.nn.tanh, reuse=None): super(tgcnCell, self).__init__(units=num_units,_reuse=reuse) self._act = act self._nodes = num_nodes self._units = num_units self._adj = [] self._adj.append(calculate_laplacian(adj)) @property def state_size(self): return self._nodes * self._units @property def output_size(self): return self._units def __call__(self, inputs, state, scope=None): with tf.variable_scope(scope or "tgcn"): with tf.variable_scope("gates"): value = tf.nn.sigmoid( self._gc(inputs, state, 2 * self._units, bias=1.0, scope=scope)) r, u = tf.split(value=value, num_or_size_splits=2, axis=1) with tf.variable_scope("candidate"): r_state = r * state c = self._act(self._gc(inputs, r_state, self._units, scope=scope)) new_h = u * state + (1 - u) * c return new_h, new_h def _gc(self, inputs, state, output_size, bias=0.0, scope=None): inputs = tf.expand_dims(inputs, 2) state = tf.reshape(state, (-1, self._nodes, self._units)) x_s = tf.concat([inputs, state], axis=2) input_size = x_s.get_shape()[2].value x0 = tf.transpose(x_s, perm=[1, 2, 0]) x0 = tf.reshape(x0, shape=[self._nodes, -1]) scope = tf.get_variable_scope() with tf.variable_scope(scope): for m in self._adj: x1 = tf.sparse_tensor_dense_matmul(m, x0) x = tf.reshape(x1, shape=[self._nodes, input_size,-1]) x = tf.transpose(x,perm=[2,0,1]) x = tf.reshape(x, shape=[-1, input_size]) weights = tf.get_variable( 'weights', [input_size, output_size], initializer=tf.contrib.layers.xavier_initializer()) x = tf.matmul(x, weights) # (batch_size * self._nodes, output_size) biases = tf.get_variable( "biases", [output_size], initializer=tf.constant_initializer(bias, dtype=tf.float32)) x = tf.nn.bias_add(x, biases) x = tf.reshape(x, shape=[-1, self._nodes, output_size]) x = tf.reshape(x, shape=[-1, self._nodes * output_size]) return x”
最新发布
04-05
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值