书生大模型实战营
文章平均质量分 92
Ace_bb
这个作者很懒,什么都没留下…
展开
-
【无标题】书生大模型实战营闯关记录----第十二关:茴香豆:企业级知识库问答工具;Web版茴香豆使用教程;茴香豆本地化标准版部署搭建教程;知识库构建问答
是由书生·浦语团队开发的一款开源、专门针对国内企业级使用场景设计并优化的知识问答工具。在基础 RAG 课程中我们了解到,RAG 可以有效的帮助提高 LLM 知识检索的相关性、实时性,同时避免 LLM 训练带来的巨大成本。在实际的生产和生活环境需求,对 RAG 系统的开发、部署和调优的挑战更大,如需要解决群应答、能够无关问题拒答、多渠道应答、更高的安全性挑战。因此,根据大量国内用户的实际需求,总结出了的茴香豆知识问答助手架构,帮助企业级用户可以快速上手安装部署。三阶段 Pipeline (原创 2024-09-01 10:59:39 · 1244 阅读 · 0 评论 -
书生大模型实战营闯关记录----第十一关:LMDeploy 量化部署进阶实践 KV cache量化部署,W4A16 模型量化和部署
关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。在终端中,让我们输入以下指令,来创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安装0.5.3版本的lmdeploy及相关包。让我们回到LMDeploy,在最新的版本中,LMDeploy使用的是AWQ算法,能够实现模型的4bit权重量化。而在实际应用中,我们有时会将大模型封装为API接口服务,供客户端访问。原创 2024-09-01 01:09:25 · 1231 阅读 · 0 评论 -
书生大模型实战营闯关记录----第十关:使用Lagent 自定义 Agent 智能体
Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。Lagent 包含三个主要模块:agents,llms 和 actions。agents 实现了多种智能体,如 ReAct,AutoGPT。llms 支持多种大语言模型,包括在 HuggingFace 上托管的开源模型(Llama-2, InterLM)及 GPT3.5/4 等闭源模型。actions 包含一系列工具,并提供工具执行器来统一管理。原创 2024-08-31 19:40:14 · 1153 阅读 · 0 评论 -
书生大模型实战营闯关记录----第八关:书生大模型全链路开源开放体系
书生大模型,即InternLM系列模型,是由上海人工智能实验室书生团队开发的一系列大语言模型。这些模型以其强大的功能而著称,涵盖了从基础的语言理解到复杂的数学解题和图文创作等多个领域。原创 2024-08-11 00:49:19 · 965 阅读 · 0 评论 -
书生大模型实战营闯关记录----第六关:大语言模型微调实战,LoRA和QLoRA微调,理论+Xtuner微调实操
微调(fine-tuning)是一种基于预训练模型,通过少量的调整(fine-tune)来适应新的任务或数据的方法。微调是在预训练模型的基础上,将模型中一些层的权重参数进行微调,以适应新的数据集或任务。预训练模型部分已经在大规模数据上得到了训练,它们通常是较为通用且高性能的模型,因此可以很好地作为新任务的起点。微调可以加快模型的收敛速度,降低模型过拟合的风险,并在不消耗过多计算资源的情况下获取较好的模型性能。原创 2024-08-10 00:49:57 · 759 阅读 · 0 评论 -
书生大模型实战营闯关记录----第五关:LlamaIndex+Internlm2 RAG实践Demo:效果对比,文档加载,向量库构建,检索器,模型推理
RAG正是这种方式。对于LLM来说,这几乎总是意味着创建向量嵌入,即你的数据含义的数值表示,以及许多其他元数据策略,使其易于准确找到上下文相关的数据。给模型注入新知识的方式,可以简单分为两种方式,一种是内部的,即更新模型的权重,另一个就是外部的方式,给模型注入格外的上下文或者说外部信息,不改变它的的权重。第一种方式,改变了模型的权重即进行模型训练,这是一件代价比较大的事情,大语言模型具体的训练过程,可以参考。完整的RAG代码如下,包含了模型加载,文档加载,向量索引库构建,检索器构建和模型输出。原创 2024-08-04 14:05:18 · 1151 阅读 · 0 评论 -
书生大模型实战营闯关记录----第四关:提示词工程实践,什么是Prompt,提示词设计框架CRISPE/CO-STAR,LangGPT结构化提示词
Prompt是一种用于指导以大语言模型为代表的生成式人工智能生成内容(文本、图像、视频等)的输入方式。它通常是一个简短的文本或问题,用于描述任务和要求。Prompt可以包含一些特定的关键词或短语,用于引导模型生成符合特定主题或风格的内容。例如,如果我们要生成一篇关于“人工智能”的文章,我们可以使用“人工智能”作为Prompt,让模型生成一篇关于人工智能的介绍、应用、发展等方面的文章。Prompt还可以包含一些特定的指令或要求,用于控制生成文本的语气、风格、长度等方面。转载 2024-08-03 16:57:23 · 155 阅读 · 0 评论 -
书生大模型实战营闯关记录----第一关:Linux基础知识,SSH连接远程服务器,Linux常用命令,创建Anaconda虚拟环境
连接开发及和基础Linux操作原创 2024-07-23 00:31:43 · 1144 阅读 · 0 评论 -
书生大模型实战营闯关记录----第二关:实现word_count统计文本中word频次
请实现一个wordcount函数,统计英文字符串中每个单词出现的次数。返回一个字典,key为单词,value为对应单词出现的次数。Eg:TIPS:记得先去掉标点符号,然后把每个单词转换成小写。不需要考虑特别多的标点符号,只需要考虑实例输入中存在的就可以。原创 2024-07-23 22:35:58 · 395 阅读 · 0 评论