本文整理自播客【屠龙之术】,主播庄明昊,小宇宙播客地址:Vol.55 Manus没有秘密---70页PPT解读AI Agent - 屠龙之术 | 小宇宙 - 听播客,上小宇宙
2025年春天,一个叫Manus的AI工具突然引爆科技圈。它没有预设的工作流程,不靠垂直场景定制,而是让大模型在虚拟机里自主规划、执行、总结——用户能看见它查网页时的鼠标点击,写代码时的语法纠错,甚至因为超时重启的“小脾气”。Manus的颠覆性在于证明:AI Agent的核心不是技术黑箱,而是让普通人看见智能的工作痕迹。尽管它会搞错海关数据、画丑示意图,但这种“看得见的笨拙”,恰恰标志着AI从“回答问题”到“解决问题”的质变。当行业还在争论“套壳还是创新”时,Manus用自来水式传播宣告:2025,AI Agent元年已至,而秘密藏在每个用户看得见的细节里。
一、从“吐字”到“干活”:AI的三次“看见革命”
2022年11月,ChatGPT让所有人惊呼“机器会说人话了”(L1);2025年1月,DeepSeek的推理模型让人看到“AI会一步步思考”(L2);2025年3月,Manus的用户发现:AI终于会“干活”了。
在特斯拉股票分析的案例里,有用户截了一张Manus的“工位监控”:凌晨2点,它打开彭博终端复制财报数据,在StockTwits论坛抓取散户情绪关键词,用Python生成K线图,最后把所有步骤整理成带注释的PDF。“就像看实习生加班,虽然排版丑,但每个动作都真实。”这种“透明感”,恰恰戳中了Agent的本质——用户需要的不是完美答案,而是看见智能的工作痕迹。
对比传统AI工具,Manus的“可见性”带来了质变。当用户让豆包“分析美股趋势”,得到的是一段文字;而Manus会生成待办清单:
1. 下载2024年Q4财报
2. 爬取Reddit热帖
3. 对比分析师评级
这种“把思考过程摊在阳光下”的设计,让退休的大学教授都能上手:“我教退休老师用Manus做教学PPT,他们终于看懂AI不是魔法,是个会犯错的‘笨学生’。”
二、less structure,more intelligence:Manus的反直觉实验
2024年,当行业都在给Agent套上医疗、法律等垂直场景的“紧箍咒”时,Manus团队做了个激进实验:0预设工作流,只给模型一台虚拟机、浏览器和结果激励。
故事要从创始团队的“浏览器噩梦”说起。2024年,Manus团队曾尝试做AI浏览器,却发现用户需要一直盯着屏幕,不能切后台、不能断网。“就像让实习生站在你旁边写作业,太煎熬了。”直到某天,他们看到Up浏览器停止更新的公告,突然顿悟:Agent应该在云端自主工作,用户只需要接收结果。
技术上,这意味着推翻所有预设。当其他Agent还在用“如果-那么”的流程图控制模型时,Manus只用两条规则:1. 完成用户任务 2. 每步操作记录在案。在GAIA基准测试中,面对“数Youtube视频里的企鹅种类”这种L3级难题,Manus会自己发现快捷键K(暂停)和数字键(进度控制),逐帧截图识别——尽管因为模型幻觉误判了一种帝企鹅,但整个思考过程让评委惊呼:“这才是真正的智能。”
这种“少控制=强智能”的哲学,暗合AlphaGo Zero的进化逻辑。Manus首席科学家Peak在2024年开源的推理模型中,就验证了“只奖励结果”的有效性:模型在代码生成任务中,自己学会了调用未标注的API,因为“这样能更快拿到正确结果”。
三、笨拙的价值:当AI开始“像人一样试错”
实测中,Manus的“不完美”反而成了最动人的标签:
- 海关数据乌龙:有用户它查2024年中越贸易额,它错把春运数据当海关报表,最后在用户提示下修正。“就像实习生第一次跑外勤,虽然迷路,但知道问路了。”
- 简笔画PPT:当用户让做“京剧美学”演示,Manus用ASCII码画脸谱,配文“因图片版权限制,暂用手绘代替”。“这道歉的样子,比某些敷衍的AI真诚多了。”
- 虚拟机重启秀:处理复杂任务时,Manus会突然跳出“当前会话已超时,是否重启?”的提示,像极了熬夜赶工的实习生揉眼睛说“让我缓会儿”。
这些“缺陷”,恰恰暴露了Agent的真实价值:
- 通用的代价是不完美:测试76个YC垂直Agent项目,Manus能覆盖58个,虽然每个都不极致,但胜在“啥都敢试”。就像大学生实习,没人指望他精通所有岗位,但愿意学习的态度更重要。
- 时间换空间的革命:用户平均使用时长从ChatGPT的30秒涨到2小时,算力成本却从20美元压到2美元。行业终于看见:当AI开始“干活”,token消耗不是线性增长,而是指数级爆发。
- 产品大于技术的叙事:尽管开源社区3小时复现Demo,但普通用户根本玩不转——需要搭服务器、调API、写命令行。Manus的护城河,藏在“让老奶奶都能点击‘开始任务’”的细节里。
四、Agent元年的真相:不是颠覆,而是陪伴
在深圳某4S店,销售经理王姐的体验最具代表性。她让Manus整理客户试驾数据,收到的Excel里有这样的备注:“第3行客户电话疑似有误,已标注红色;试驾路线图因地图API限制,暂用文字描述。”
“这不完美,但比我自己整理快三倍。”王姐的话,道破了2025年的AI焦虑:大厂担心“套壳没技术”,投资人追问“壁垒在哪”,而普通用户只关心“能不能帮我节省时间”。
Manus的爆火,本质是一场“陪伴革命”。当创始人张涛在极客发那条“服务器过载致歉”的消息时,评论区满是:“慢慢来,我们等你”、“实习生犯错很正常”。这种宽容,源于Manus创造的数字陪伴感:
- 可追溯的成长:每个任务都有“执行日志”,用户能看到AI从“啥也不会”到“逐渐熟练”的过程,就像看着孩子学走路。
- 允许失败的安全感:任务失败时,Manus会自动生成“复盘报告”,列出哪里出错、如何改进。这种“承认不足”的态度,比某些AI的“完美幻觉”更让人信任。
- 共创的参与感:有用户发现,她给Manus的提示越具体(比如“去海关官网总署查数据”),结果越准确。“原来我不是单纯的使用者,而是AI的‘教练’。”
五、没有秘密的未来:当智能走进日常
Manus的“透明哲学”,正在重塑AI行业的叙事。2025年3月,豆包、阿里等大厂迅速跟进,推出“可见执行”功能;YC新一批孵化项目中,80%的Agent开始标注“操作日志”。
但真正的革命,发生在普通人的电脑里。上海的退休教师陈阿姨,用Manus整理了全家人的医疗档案:它自动爬取医院官网,识别检查报告,甚至发现了三年前的过敏史记录。“以前觉得AI很远,现在它就像家里的小助手,虽然偶尔笨手笨脚,但真的在帮忙。”
AI 不是炫技,而是成为用户的“数字实习生”—— 用户不需要关心它用了多少大模型、多少插件,只需要知道它能否帮自己搞定复杂任务。当Manus的虚拟机里开始跑起用户的婚礼策划、创业BP、甚至给孩子的睡前故事时,我们终于明白:
AI Agent的秘密,从来不在技术黑箱里,而在每个用户看得见的、笨拙却真诚的努力里。2025年的春天,Manus撕开的不仅是Agent的面纱,更是一个让智能走进日常的时代——在这里,技术不再高冷,而是带着人性的温度,陪我们一起成长。