A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u)³0 of power, may produce an amount 0£p(u)£pmax(u) of power, may consume an amount 0£c(u)£min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0£l(u,v)£lmax(u,v) of power delivered by u to v. Let be the power consumed in the net. The problem is to compute the maximum value of Con.
Input
An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.
There are several data sets in the input text file. Each data set encodes a power network. It starts with four integers: 0£n£100 (nodes), 0£np£n (power stations), 0£nc£n (consumers), and 0£m£n2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0£z£1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0£z£10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0£z£10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.
Output
For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.
The input in table 1 contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
Sample Input
2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4
Sample Output
15
6
解题思路:引用其他博客的言论,虽然此图的原图是点也有容量,不过只有源点和汇点有容量,所以,如果我们加入一个超级源点和超级汇点,就可以将点的容量引流到汇点到超级汇点的容量以及源点到超级源点的容量~~这样,就可以使用最大流最小割算法了~~
package OJ; import java.util.*; import java.util.regex.Matcher; import java.util.regex.Pattern; public class P34_temp { static final int Max = 105; static final int inf = 99999999; static int n, np, nc, m, ans; static int[][] map; static int[] que; static int[] pre; static boolean[] vis; static public int min(int a, int b){ return a<b ? a : b; } static public boolean bfs(){ // bfs求增广路径。 int head = 0; int tail = 0; /这三行要注意,必须在这里初始化,不能在外面初始化 que = new int[Max]; vis = new boolean[Max]; pre = new int[Max]; que[tail++] = n; //从超级源点开始进行搜索 vis[n] = true; //标记超级源点已被访问 while(tail > head){ int u = que[head++]; for(int i=0; i<=n+1; i++){ if(!vis[i] && map[u][i] !=0){ pre[i] = u; que[tail++] = i; vis[i] = true; if(i == n+1) //到达超级汇点 return true; } } } return false; } static public void end(){ //逆向往回走一遍增广路径 int i, sum = inf; for(i = n+1; i!=n; i=pre[i]) //从超级汇点开始回溯,直到到超级源点为止,为了找到路径上的最小流量 sum = min(sum, map[pre[i]][i]); for(i = n+1; i!=n; i=pre[i]){ map[pre[i]][i] -= sum; map[i][pre[i]] += sum; } ans += sum; } public static void main(String[] args) { int u, v, w; Scanner in = new Scanner(System.in); map = new int[Max][Max]; while(true){ n = in.nextInt(); np = in.nextInt(); nc = in.nextInt(); m = in.nextInt(); while(m-- >0){ String s = in.next(); String TPattern = "\\((.*?),(.*?)\\)(.*)"; Pattern p = Pattern.compile(TPattern); Matcher CM = p.matcher(s); if(CM.find()){ u= Integer.parseInt(CM.group(1)); v = Integer.parseInt(CM.group(2)); w = Integer.parseInt(CM.group(3)); map[u][v] += w; //预防出现重边的情况 } } while(np-- > 0){ String s = in.next(); String TPattern = "\\((.*?)\\)(.*)"; Pattern p = Pattern.compile(TPattern); Matcher CM = p.matcher(s); if(CM.find()){ u = Integer.parseInt(CM.group(1)); w = Integer.parseInt(CM.group(2)); map[n][u] = w; //加入超级源点s } } while(nc-- > 0){ String s = in.next(); String TPattern = "\\((.*?)\\)(.*)"; Pattern p = Pattern.compile(TPattern); Matcher CM = p.matcher(s); if(CM.find()){ u = Integer.parseInt(CM.group(1)); w = Integer.parseInt(CM.group(2)); map[u][n+1] = w; //加入超级汇点t } } ans = 0; while(bfs()) end(); System.out.println(ans); } } }