边缘计算卸载算法--LOPRTC

LOPRTC卸载算法

背景:我实现该算法是在边缘计算单个工作流环境中,下面可以看到此背景下的java代码实现。

1.算法伪代码在这里插入图片描述
2.输入

任务集等…

3.输出

接近最优的任务调度。

4.参数说明

在这里插入图片描述
1.MD:移动设备
2.RLTS:合理的基于本地的任务时间表
3.MEC服务器集S = {S1,S2,…,SM}
4.任务集T = {T1,T2,…,TN}
5.每个Job的处理时间P = {P0,P1,…,Pn-1}
6.某设备的行走路径:P = {(Au1,tu1),(Au2,tu2),…(Aup,tup)},其中tu是一个任意的时间点。
7.移动设备集S0 = {SM+1,SM+2,…,SM+L}
8.一个区域A = {Au}
9.整数q
10.dj:工作流任务最长执行时间

5.分析
  1. 算法2-5行:将N个任务划分成N/q(向上取整)个组。1<= q <= N
  2. 算法6-17行:任务调度优化,For 0≤k≤(N / q), 计算局部最优任务调度
    ① 计算第 k 组中所有任务的最早开始时间与完成所有任务的最晚结束时间(第k组的最晚结束时间是第 k+1 组的最早开始时间)。
    ② 为第 k 组中的每个任务 Tj 计算候选卸载MEC服务器集CSj,每个任务 Tj 可以卸载到覆盖其行走路径的MEC服务器,在时间间隔[第k组的最早开始时间, min {dj, 第k组的最晚结束时间}]。
    ③ 计算第 k 组任务的局部最优任务调度(利用分支限界法)。
  3. 算法18行:通过这些局部最优任务调度,计算所有任务(各组的并集)的近似最优任务调度。
    在这里插入图片描述

本质:还是类似枚举,只是利用时间限制剪掉了一些情况的组合。

6.我的java代码实现
/**
 * 初始化的方法
 * 初始化任务的邻接矩阵,任务、组的最早开始时间与最晚结束时间
 */
void LOPRTCInit(){
    // 卸载策略数组初始化
    offloadStra = new int[taskNum];
    for (int i = 0; i < taskNum; i++) {
        offloadStra[i] = 0;
    }
    // 邻接矩阵初始化
    task_depen = new int[taskNum][taskNum];
    for (int i = 0; i < taskNum; i++) {
        for (int j = 0; j < taskNum; j++) {
            task_depen[i][j] = 0;
        }
    }
    try{
        SAXReader reader = new SAXReader();// 创建SAXReader对象用于读取xml文件
        Document doc = reader.read(new File(path));// 读取xml文件,获得Document对象
        Element root = doc.getRootElement();
        List<Element> childElements = root.elements("child");// 获取根元素下的所有child标签的子元素
        for (int i = 0; i < childElements.size(); i++) {
            String vex_str = childElements.get(i).attributeValue("ref");
            int vex_int = Integer.parseInt(vex_str.substring(2));
            List<Element> parents = childElements.get(i).elements("parent");// 获取child元素下的所有parent标签元素
            for (int j = 0; j < parents.size(); j++) {
                String vex_parent_str = parents.get(j).attributeValue("ref");
                int vex_parent_int = Integer.parseInt(vex_parent_str.substring(2));
                task_depen[vex_parent_int][vex_int] = 1;
            }
        }
    }catch(Exception e){
        System.out.println("xml没找到!");
    }
    // 每个任务的执行时间初始化
    task_exec = new double[taskNum];
    try{
        SAXReader reader = new SAXReader();// 创建SAXReader对象用于读取xml文件
        Document doc = reader.read(new File(path));// 读取xml文件,获得Document对象
        Element root = doc.getRootElement();
        List<Element> jobElements = root.elements("job");// 获取根元素下的所有job标签的子元素
        for (int i = 0; i < jobElements.size(); i++) {
            String vexStr = jobElements.get(i).attributeValue("id");
            int vexInt = Integer.parseInt(vexStr.substring(2));
            String timeStr = jobElements.get(i).attributeValue("runtime");
            double timeDouble = Double.parseDouble(timeStr);
            task_exec[vexInt] = timeDouble;
        }
    }catch(Exception e){
        System.out.println("xml没找到!");
    }
    // 每个任务的EST、EFT矩阵初始化
    task_time = new double[taskNum][2];
    int count = 0;// 辅助变量
    for (int k = 0; k < taskNum; ++k) {
        for (int j = 0; j < taskNum; j++) {// 初始化开始节点的EST、EFT
            if (task_depen[j][k] == 0) {
                ++count;
            }
        }
        if (count == taskNum) {
            task_time[k][0] = 0;
            task_time[k][1] = task_exec[k];
            for (int j = 0; j < taskNum; j++) {// 初始化开始节点直接后继节点的EST、EFT
                if (task_depen[k][j] == 1) {
                    if (task_time[j][0] < task_time[k][1]) {
                        task_time[j][0] = task_time[k][1];
                        task_time[j][1] = task_time[j][0] + task_exec[j];
                    }
                }
            }
        }
        count = 0;
    }
    for (int k = 0; k < taskNum; ++k) {// 初始化剩下的所有节点的EST、EFT
        for (int j = 0; j < taskNum; j++) {
            if (task_depen[k][j] == 1) {
                if (task_time[j][0] < task_time[k][1]) {
                    task_time[j][0] = task_time[k][1];
                    task_time[j][1] = task_time[j][0] + task_exec[j];
                }
            }
        }
    }
    // 计算分几组
    if(taskNum % 6 == 0){// 分6组
        groupStartTime = new double[6];
        groupEndTime = new double[6];
    }else{
        groupStartTime = new double[7];
        groupEndTime = new double[7];
    }
    // 测试输出
    /*for (int i = 0; i < taskNum; i++) {
        for (int j = 0; j < 2; j++) {
            System.out.print(task_time[i][j] + " ");
        }
        System.out.println();
    }
    System.out.println();*/
    // 计算每组的最早开始时间,最晚结束时间
    try{
        for (int i = 0; i < groupStartTime.length; i++) {
            double minStart = task_time[i*q][0];
            for (int j = i*q; j<(i+1)*q && j<taskNum; j++) {
                if(minStart > task_time[j][0]){
                    minStart = task_time[j][0];
                }
            }
            groupStartTime[i] = minStart;
        }
    }catch (Exception e){
        System.out.println("数组下标越界异常!");
    }
    for (int i = 0; i < groupEndTime.length-1; i++) {
        groupEndTime[i] = groupStartTime[i+1];
    }
    double maxEnd = task_time[0][1];
    for (int i = 1; i < taskNum; i++) {
        if(task_time[i][1] > maxEnd){
            maxEnd = task_time[i][1];
        }
    }
    groupEndTime[groupEndTime.length-1] = maxEnd;
}
/**
 * 找出某组任务的局部最优卸载策略
 * @param indexOfGroup 某组任务的索引下标(第一组任务对应下标为0)
 */
void groupOptimal(int indexOfGroup){
    // 依次是卸载到云层、雾层、本地
    double time1 = 0, time2 = 0, time3 = 0;
    double energy1 = 0, energy2 = 0, energy3 = 0;
    powerModel = (FogLinearPowerModel) getmobile().getHost().getPowerModel();
    // 获取云、雾、终端层的平均Mips
    double cAvgMips = getcloud().getAverageMips();
    double fAvgMips = getFogNode().getAverageMips();
    double mAvgMips = getmobile().getAverageMips();

    try{
        for (int i = indexOfGroup*q; i<(indexOfGroup+1)*q && i<taskNum; i++) {
            Job job = joblist.get(i);
            time1 = job.getCloudletLength() / cAvgMips
                    + getJobFileSize(job) / parameter / WAN_Bandwidth;
            //卸载所需能耗 = 空闲功率 * 云执行时间 + 传输功率 * (发送数据大小 + 接收数据大小 ) / WAN带宽
            energy1 = powerModel.getStaticPower() * job.getCloudletLength() / cAvgMips
                    + powerModel.getSendPower() * getJobFileSize(job) / parameter / WAN_Bandwidth;

            time2 = job.getCloudletLength() / fAvgMips
                    + getJobFileSize(job) / parameter / LAN_Bandwidth;
            energy2 = powerModel.getStaticPower() * job.getCloudletLength() / fAvgMips
                    + powerModel.getSendPower() * getJobFileSize(job) / parameter / LAN_Bandwidth;

            time3 = job.getCloudletLength() / mAvgMips;
            energy3 = powerModel.getMaxPower() * job.getCloudletLength() / mAvgMips;

            double minTimeSpan = Math.min(deadline,groupEndTime[indexOfGroup]-groupStartTime[indexOfGroup]);
            if(minTimeSpan < Math.min(time1, time2)){// 都不满足时间约束
                job.setoffloading(getmobile().getId());
            }else if(minTimeSpan > Math.max(time1, time2)){// 都满足时间约束,根据优化目标选择卸载到哪
                switch (optimize_objective){
                    case "Time":
                        if(Math.min(time1, Math.min(time2, time3)) == time1){
                            offloadStra[i] = 2;// 卸载到云
                        }else if(Math.min(time1, Math.min(time2, time3)) == time2){
                            offloadStra[i] = 1;// 卸载到雾
                        }else{
                            offloadStra[i] = 0;// 不卸载
                        }
                        break;
                    case "Energy":
                        if(Math.min(energy3, Math.min(energy1, energy2)) == energy1){
                            offloadStra[i] = 2;
                        }
                        else if(Math.min(energy3, Math.min(energy1, energy2)) == energy2){
                            offloadStra[i] = 1;
                        }
                        else{
                            offloadStra[i] = 0;
                        }
                        break;
                    default:
                        break;
                }
            }else{//minTimeSpan介于time1和time2之间
                if(minTimeSpan > time1 && minTimeSpan < time2){// 根据优化目标选择卸载到云或不卸载
                    switch (optimize_objective){
                        case "Time":
                            if(Math.min(time1, time3) == time1){
                                offloadStra[i] = 2;
                            }else{
                                offloadStra[i] = 0;
                            }
                            break;
                        case "Energy":
                            if(Math.min(energy1, energy3) == energy1){
                                offloadStra[i] = 2;
                            }else{
                                offloadStra[i] = 0;
                            }
                            break;
                        default:
                            break;
                    }
                }else{// 根据优化目标选择卸载到雾或不卸载
                    switch (optimize_objective){
                        case "Time":
                            if(Math.min(time2, time3) == time2){
                                offloadStra[i] = 1;
                            }else{
                                offloadStra[i] = 0;
                            }
                            break;
                        case "Energy":
                            if(Math.min(energy2, energy3) == energy2){
                                offloadStra[i] = 1;
                            }else{
                                offloadStra[i] = 0;
                            }
                            break;
                        default:
                            break;
                    }
                }
            }
        }
    }catch (Exception e){
        System.out.println("数组下标越界异常!");
    }
}
@Override
public void BeforeOffloading(double deadline) {
    this.deadline = deadline;
    LOPRTCInit();
    joblist = getjobList();
    for (int i = 0; i < groupStartTime.length; i++) {
        groupOptimal(i);
    }
}
### 回答1: 边缘计算是一种分布式计算模式,旨在将计算资源从云端迁移到离用户更近的边缘设备,以提供更低的延迟和更高的带宽。边缘计算卸载算法是在边缘设备上运行的一种优化算法,用于决定哪些计算任务应该在边缘设备上执行,而不是在云端执行。 Python作为一种通用的脚本和编程语言,具有易学易用的特点,具备广泛的应用领域。在边缘计算卸载算法中,Python可以用来实现各种算法,以提高边缘设备的计算性能。 边缘计算卸载算法的核心思想是根据计算任务的特性和设备资源的情况,将不同的任务分配给最适合执行该任务的设备。Python可以通过评估任务的计算量和数据传输量,以及设备的计算能力和通信带宽,来实现任务的动态调度和分配。 使用Python可以方便地实现边缘计算卸载算法的功能,例如负载均衡算法、任务调度算法和资源管理算法等。Python具有丰富的第三方库和工具,可以用来处理和分析大量的数据,以及进行复杂的计算和优化。 总而言之,边缘计算卸载算法是为了在边缘设备上实现任务分配和调度的优化算法,而Python作为一种通用的脚本和编程语言,具备易学易用的特点,在实现边缘计算卸载算法时发挥着重要的作用。 ### 回答2: 边缘计算是一种分布式计算模式,旨在将数据处理和计算任务从云端服务器移动到离用户更近的边缘设备上,以提高计算速度和减少网络延迟。边缘设备通常包括智能手机、物联网设备、路由器等。 卸载算法边缘计算中的一种关键技术,用于决定将任务从云端服务器卸载到边缘设备进行处理,以减轻云服务器的负载和提高响应速度。在边缘计算环境中,卸载算法需要根据设备的计算性能、能源消耗、网络带宽等因素,为每个任务选择最佳的执行地点。 在Python中,我们可以使用一些算法来实现边缘计算卸载决策。例如,可以使用负载均衡算法,根据设备的负载情况将任务均匀地分配给可用的边缘设备。另一种常用的卸载算法是基于启发式规则的算法,通过预先定义的规则来决定任务的卸载位置。 具体来说,如果我们有一组边缘设备和一组需要执行的任务,在Python中可以通过编写一个函数来实现卸载算法。这个函数可以接受任务和设备的相关参数,并根据预先定义的规则决定任务应该在哪个边缘设备上执行。例如,可以根据设备的负载情况选择负载较低的设备,或者根据任务的性质选择适合执行该任务的设备。 总之,边缘计算卸载算法是一个复杂的问题,需要根据具体的情况和需求进行设计和实现。通过使用Python编写算法函数,可以灵活地进行任务卸载决策,并提高边缘计算的效率和响应速度。 ### 回答3: 边缘计算是一种将数据处理和计算任务从中心服务器转移到离数据源更近的边缘设备的计算模式。边缘设备可以是智能手机、物联网设备或其他连接到互联网的设备。这种模式可以提供更快的响应时间和更高的带宽利用率。 边缘计算卸载算法是指在边缘设备上选择合适的计算任务,并将其从中心服务器迁移到边缘设备上执行的算法。这样可以减少中心服务器的负载,并提高整个系统的响应速度和效率。 在Python中,可以使用以下步骤实现边缘计算卸载算法: 1. 首先,需要收集环境中的各种信息,包括边缘设备的处理能力、网络带宽、系统负载等。这些信息可以通过调用系统API或其他传感器获取。 2. 接下来,根据收集到的信息,设计一个算法评估函数。这个函数可以根据边缘设备的处理能力和当前系统负载等因素,估计在边缘设备上执行某个任务的效果。 3. 根据算法评估函数,选择合适的任务进行卸载。可以使用贪心算法、最优化算法等方法进行任务选择。在选择任务时,可以考虑将计算量大、数据量小且需要实时响应的任务优先卸载到边缘设备上。 4. 通过网络传输将选定的任务发送到边缘设备,并在设备上执行。可以使用Python的网络编程库进行数据传输和任务执行的控制。 5. 执行完任务后,将结果返回给中心服务器进行进一步处理。 总之,边缘计算卸载算法可以使得边缘设备能够承担更多的计算任务,减轻中心服务器的负载,提高系统的效率和响应速度。使用Python可以方便地实现这一算法
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值