NumPy学习资源

原文:https://numpy.org/learn/

学习

有关**官方 NumPy 文档,**请访问numpy.org/doc/stable

NUMPY 教程

您可以在 NumPy 社区NumPy Tutorials 中找到一组教程和教育材料。这里的目标是通过 NumPy 项目以 Jupyter Notebooks 的格式提供高质量的资源,用于自学和教学课程。如果您有兴趣添加自己的内容,请查看GitHub 上numpy-tutorials 存储库


以下是精选的外部资源集合。

初学者

有大量关于 NumPy 的信息。如果您是新手,我们强烈推荐这些:

教程

图书

您可能还想查看有关“Python+SciPy”主题的Goodreads 列表。大多数书籍都是关于“SciPy 生态系统”的,它以 NumPy 为核心。

视频


先进的

尝试这些高级资源以更好地理解 NumPy 概念,例如高级索引、拆分、堆叠、线性代数等。

教程

图书

视频


NUMPY 演讲

### NumPy学习教程和资源 #### 数组创建与操作 NumPy提供了多种方法来创建数组并执行各种操作。例如,可以使用`np.array()`函数创建一维或多维数组[^2]。 ```python import numpy as np a = np.array([1, 2, 3]) b = np.array([[0], [4], [5]]) result = a + b print(result) ``` 这段代码展示了如何通过广播机制将不同形状的数组相加得到新的结果矩阵。 #### 基本数学运算功能 除了简单的算术运算外,NumPy还支持一系列高级数学计算,如绝对值、平方根、平方等: ```python n = np.array([1, 4, 8, 8, 9, -24]) # 绝对值 abs_values = np.abs(n) # 开方 sqrt_values = np.sqrt(np.abs(n)) # 对负数求开方前先取绝对值 # 平方 square_values = np.square(n) # 指数 exp_values = np.exp(n) # 自然对数(仅适用于正数) log_values = np.log(np.abs(n)) # 三角函数 sin_values = np.sin(n * (np.pi / 180)) cos_values = np.cos(n * (np.pi / 180)) tan_values = np.tan(n * (np.pi / 180)) ``` 这些例子说明了NumPy库中丰富的内置函数能够简化复杂的数值处理过程。 #### 数据舍入控制 对于浮点型数据的操作,有时需要指定保留的小数位数,这时可以用到`numpy.round()`函数: ```python rounded_array = np.round(a, decimals=2) ``` 此命令会返回一个新的数组,其中每个元素都被四舍五入到了两位小数。 为了更深入地了解NumPy的功能以及掌握更多实用技巧,建议参考官方文档和其他在线课程资料。此外,在实际项目实践中不断练习也是提高技能的有效途径之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值