A Simple Tree Problem
Given a rooted tree, each node has a boolean (0 or 1) labeled on it. Initially, all the labels are 0.
We define this kind of operation: given a subtree, negate all its labels.
And we want to query the numbers of 1's of a subtree.
Input
Multiple test cases.
First line, two integer N and M, denoting the numbers of nodes and numbers of operations and queries.(1<=N<=100000, 1<=M<=10000)
Then a line with N-1 integers, denoting the parent of node 2..N. Root is node 1.
Then M lines, each line are in the format "o node" or "q node", denoting we want to operate or query on the subtree with root of a certain node.
Output
For each query, output an integer in a line.
Output a blank line after each test case.
Sample Input
3 2
1 1
o 2
q 1
Sample Output
1
We define this kind of operation: given a subtree, negate all its labels.
And we want to query the numbers of 1's of a subtree.
Input
Multiple test cases.
First line, two integer N and M, denoting the numbers of nodes and numbers of operations and queries.(1<=N<=100000, 1<=M<=10000)
Then a line with N-1 integers, denoting the parent of node 2..N. Root is node 1.
Then M lines, each line are in the format "o node" or "q node", denoting we want to operate or query on the subtree with root of a certain node.
Output
For each query, output an integer in a line.
Output a blank line after each test case.
Sample Input
3 2
1 1
o 2
q 1
Sample Output
1
题意:有几组操作,s[0]=='o'时改变该子树的所有值,使之和原来的值相反,s[0]=='q'时问该子树上有几个点为1
思路:dfs+线段树,这题跟poj3321 差不多
一直WA了一个早上,只因为把初始化放错位置了
代码:
#include <iostream> #include <stdio.h> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <map> #include <queue> #define lson l,mid,num<<1 #define rson mid+1,r,num<<1|1 using namespace std; const int M=100050; struct node { int v; int next; } edge[M*2]; int sum[M*4],cnt[M*4],head[M]; int low[M],high[M],vis[M]; int cc,e,n,m; void init() { memset(vis,0,sizeof(vis)); memset(head,-1,sizeof(head)); memset(low,0,sizeof(low)); memset(high,0,sizeof(high)); cc=e=0; } void addEdge(int u,int v) { edge[e].v=v; edge[e].next=head[u]; head[u]=e++; } void dfs(int u) { low[u]=++cc; vis[u]=1; for(int k =head[u]; k!=-1; k=edge[k].next) { if(!vis[edge[k].v]) dfs(edge[k].v); } high[u]=cc; } void down(int num,int mm) { if(cnt[num]%2!=0) { cnt[num<<1]+= cnt[num]; cnt[num<<1|1]+=cnt[num]; sum[num<<1] = (mm-(mm>>1))-sum[num<<1]; sum[num<<1|1] =(mm>>1)-sum[num<<1|1]; cnt[num]=0; } } void up(int num) { sum[num] = sum[num<<1] + sum[num<<1|1]; } void build(int l,int r,int num) { //必须写外面,真是,WA了无数次 sum[num]=0; cnt[num]=0; if(l==r) {
return; } int mid = (l+r)>>1; build(lson); build(rson);}void update(int L,int R ,int l, int r ,int num){ if(L<=l && r <=R ) { cnt[num]++; sum[num]=r-l+1-sum[num]; return; } down(num,r-l+1); int mid = (l+r)>>1; if(L <= mid)update(L,R,lson); if(R > mid)update(L,R,rson); up(num);}int query(int L,int R,int l,int r,int num){ if(L <= l && r <= R) { return sum[num]; } down(num,r-l+1); int ret=0; int mid = (l+r)>>1; if(L <= mid ) ret += query(L,R,lson); if(R > mid)ret += query(L,R,rson); return ret;}int main(){ while(scanf("%d%d",&n,&m)!=EOF) { init(); int u; for(int i=2; i<=n; i++) { scanf("%d",&u); addEdge(u,i); addEdge(i,u); } dfs(1); build(1,n,1); char s[2]; int nod; for(int i=1; i<=m; i++) { scanf("%s%d",s,&nod); if(s[0]=='o') { update(low[nod],high[nod],1,n,1); } else if(s[0]=='q') { printf("%d\n",query(low[nod],high[nod],1,n,1)); } } printf("\n"); } return 0;}//sum[num]=0; //cnt[num]=0;