漫步校园
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3815 Accepted Submission(s): 1164
3 1 2 3 1 2 3 1 2 3 3 1 1 1 1 1 1 1 1 1
1 6
LL
题意:一开始看错题意,WA得惨。要求的不是最短路的条数,是从(0,0)开始走到(n-1,n-1),每次走的下一步距离(n-1.n-1)的最短距离必须更近。 问有多少条满足条件
思路:此题看懂了题意并不难,先用BFS求出每一个点到终点的最短距离,然后就DP记忆化搜索就OK。 注意BFS可以不用优先队列,不过比较难处理。推荐优先队列。
代码1(不用优先队列):
#include<iostream>
#include <cstdio>
#include <cstring>
#include<vector>
#include<queue>
using namespace std;
#define INF 1<<31-1
#define MAX 50+10
int n;
bool visited[MAX][MAX];
int g[MAX][MAX];
long long dp[MAX][MAX];
int dis[MAX][MAX];
int d[4][2]= {{-1,0},{1,0},{0,1},{0,-1}};
struct node
{
int x;
int y;
};
void bfs()
{
int i;
node a,b;
a.x=n-1;
a.y=n-1;
queue<node>q;
q.push(a);
while(!q.empty())
{
a=q.front();
q.pop();
visited[a.x][a.y]=false;
for(i=0; i<4; i++)
{
b.x=a.x+d[i][0];
b.y=a.y+d[i][1];
if(b.x>=0&&b.x<n&&b.y>=0&&b.y<n&&dis[b.x][b.y]>dis[a.x][a.y]+g[b.x][b.y])
{
dis[b.x][b.y]=dis[a.x][a.y]+g[b.x][b.y];
if(!visited[b.x][b.y])
{
visited[b.x][b.y]=true;
q.push(b);
}
}
}
}
}
long long dfs(int a,int b)
{
if(dp[a][b])
return dp[a][b];
for(int i=0; i<4; i++)
{
int tx=a+d[i][0];
int ty=b+d[i][1];
if(tx>=0&&tx<n&&ty>=0&&ty<n&&dis[a][b]>dis[tx][ty])
dp[a][b]+=dfs(tx,ty);
}
return dp[a][b];
}
int main()
{
int i,j;
while(scanf("%d", &n)!=EOF)
{
for(i=0; i<n; i++)
for(j=0; j<n; j++)
{
scanf("%d",&g[i][j]);
dis[i][j]=INF;
}
dis[n-1][n-1]=g[n-1][n-1];
bfs();
memset(visited,0,sizeof(visited));
memset(dp,0,sizeof(dp));
dp[n-1][n-1]=1;
printf("%I64d\n",dfs(0, 0));
}
return 0;
}
代码2(优先队列):
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define N 55
#define INF 1<<30
int a[N][N];
int dis[N][N];
int flag[N][N];
long long dp[N][N];
int n;
int d[4][2]= {-1,0,1,0,0,-1,0,1};
struct Node
{
int x,y;
};
bool operator < (const Node &t1,const Node &t2)
{
return dis[t1.x][t1.y]>dis[t2.x][t2.y];
}
long long dfs(int x,int y)
{
if(dp[x][y]) return dp[x][y];
for(int i=0; i<4; i++)
{
int x1=x+d[i][0];
int y1=y+d[i][1];
if(x1<0||x1>=n||y1<0||y1>=n||dis[x][y]<=dis[x1][y1])
continue;
dp[x][y]+=dfs(x1,y1);
}
return dp[x][y];
}
void bfs()
{
flag[n-1][n-1]=1;
priority_queue<Node>q;
Node b,now,next;
b.x=n-1;
b.y=n-1;
q.push(b);
while(!q.empty())
{
now=q.top();
q.pop();
for(int i=0; i<4; i++)
{
next.x=now.x+d[i][0];
next.y=now.y+d[i][1];
if(next.x>=0&&next.x<n&&next.y>=0&&next.y<n&&!flag[next.x][next.y]
&&dis[next.x][next.y]>dis[now.x][now.y]+a[next.x][next.y])
{
flag[next.x][next.y]=1;
dis[next.x][next.y]=dis[now.x][now.y]+a[next.x][next.y];
q.push(next);
}
}
}
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=0; i<n; i++)
{
for(int k=0; k<n; k++)
{
scanf("%d",&a[i][k]);
dis[i][k]=INF;
}
}
memset(flag,0,sizeof(flag));
dis[n-1][n-1]=a[n-1][n-1];
bfs();
memset(dp,0,sizeof(dp));
dp[n-1][n-1]=1;
printf("%lld\n",dfs(0,0));
}
return 0;
}