hdu-1428 漫步校园(BFS+记忆化搜索)

漫步校园

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3815    Accepted Submission(s): 1164


Problem Description
LL最近沉迷于AC不能自拔,每天寝室、机房两点一线。由于长时间坐在电脑边,缺乏运动。他决定充分利用每次从寝室到机房的时间,在校园里散散步。整个HDU校园呈方形布局,可划分为n*n个小方格,代表各个区域。例如LL居住的18号宿舍位于校园的西北角,即方格(1,1)代表的地方,而机房所在的第三实验楼处于东南端的(n,n)。因有多条路线可以选择,LL希望每次的散步路线都不一样。另外,他考虑从A区域到B区域仅当存在一条从B到机房的路线比任何一条从A到机房的路线更近(否则可能永远都到不了机房了…)。现在他想知道的是,所有满足要求的路线一共有多少条。你能告诉他吗?
 

Input
每组测试数据的第一行为n(2=<n<=50),接下来的n行每行有n个数,代表经过每个区域所花的时间t(0<t<=50)(由于寝室与机房均在三楼,故起点与终点也得费时)。
 

Output
针对每组测试数据,输出总的路线数(小于2^63)。
 

Sample Input
  
  
3 1 2 3 1 2 3 1 2 3 3 1 1 1 1 1 1 1 1 1
 

Sample Output
  
  
1 6
 

Author

LL


题意:一开始看错题意,WA得惨。要求的不是最短路的条数,是从(0,0)开始走到(n-1,n-1),每次走的下一步距离(n-1.n-1)的最短距离必须更近。 问有多少条满足条件

思路:此题看懂了题意并不难,先用BFS求出每一个点到终点的最短距离,然后就DP记忆化搜索就OK。  注意BFS可以不用优先队列,不过比较难处理。推荐优先队列。

代码1(不用优先队列):

#include<iostream>

#include <cstdio>

#include <cstring>

#include<vector>

#include<queue>

using namespace std;

 

#define INF 1<<31-1

#define MAX 50+10

 

int n;

bool visited[MAX][MAX];

int g[MAX][MAX];

long long dp[MAX][MAX];

int dis[MAX][MAX];

int d[4][2]= {{-1,0},{1,0},{0,1},{0,-1}};

 

struct node

{

   int x;

    int y;

};

 

void bfs()

{

   int i;

   node a,b;

   a.x=n-1;

   a.y=n-1;

   queue<node>q;

   q.push(a);

   while(!q.empty())

    {

       a=q.front();

       q.pop();

       visited[a.x][a.y]=false;

       for(i=0; i<4; i++)

       {

           b.x=a.x+d[i][0];

           b.y=a.y+d[i][1];

           if(b.x>=0&&b.x<n&&b.y>=0&&b.y<n&&dis[b.x][b.y]>dis[a.x][a.y]+g[b.x][b.y])

           {

               dis[b.x][b.y]=dis[a.x][a.y]+g[b.x][b.y];

                if(!visited[b.x][b.y])

                {

                    visited[b.x][b.y]=true;

                    q.push(b);

                }

           }

       }

    }

}

 

long long dfs(int a,int b)

{

   if(dp[a][b])

       return dp[a][b];

   for(int i=0; i<4; i++)

    {

       int tx=a+d[i][0];

       int ty=b+d[i][1];

       if(tx>=0&&tx<n&&ty>=0&&ty<n&&dis[a][b]>dis[tx][ty])

           dp[a][b]+=dfs(tx,ty);

    }

   return dp[a][b];

}

int main()

{

   int i,j;

   while(scanf("%d", &n)!=EOF)

    {

       for(i=0; i<n; i++)

           for(j=0; j<n; j++)

           {

                scanf("%d",&g[i][j]);

                dis[i][j]=INF;

           }

       dis[n-1][n-1]=g[n-1][n-1];

       bfs();

       memset(visited,0,sizeof(visited));

       memset(dp,0,sizeof(dp));

       dp[n-1][n-1]=1;

       printf("%I64d\n",dfs(0, 0));

    }

   return 0;

}


代码2(优先队列):

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define N 55
#define INF 1<<30
int a[N][N];
int dis[N][N];
int flag[N][N];
long long dp[N][N];
int n;
int d[4][2]= {-1,0,1,0,0,-1,0,1};
struct Node
{
    int x,y;
};
bool operator < (const Node &t1,const Node &t2)
{
    return dis[t1.x][t1.y]>dis[t2.x][t2.y];
}


long long dfs(int x,int y)
{
    if(dp[x][y]) return dp[x][y];
    for(int i=0; i<4; i++)
    {
        int x1=x+d[i][0];
        int y1=y+d[i][1];
        if(x1<0||x1>=n||y1<0||y1>=n||dis[x][y]<=dis[x1][y1])
            continue;
        dp[x][y]+=dfs(x1,y1);
    }
    return dp[x][y];
}
void bfs()
{
    flag[n-1][n-1]=1;
    priority_queue<Node>q;
    Node b,now,next;
    b.x=n-1;
    b.y=n-1;
    q.push(b);
    while(!q.empty())
    {
        now=q.top();
        q.pop();
        for(int i=0; i<4; i++)
        {
            next.x=now.x+d[i][0];
            next.y=now.y+d[i][1];
            if(next.x>=0&&next.x<n&&next.y>=0&&next.y<n&&!flag[next.x][next.y]
               &&dis[next.x][next.y]>dis[now.x][now.y]+a[next.x][next.y])
            {
                flag[next.x][next.y]=1;
                dis[next.x][next.y]=dis[now.x][now.y]+a[next.x][next.y];
                q.push(next);
            }
        }
    }
}
int main()
{
    while(~scanf("%d",&n))
    {
        for(int i=0; i<n; i++)
        {
            for(int k=0; k<n; k++)
            {
                scanf("%d",&a[i][k]);
                dis[i][k]=INF;
            }
        }
        memset(flag,0,sizeof(flag));
        dis[n-1][n-1]=a[n-1][n-1];
        bfs();
        memset(dp,0,sizeof(dp));
        dp[n-1][n-1]=1;
        printf("%lld\n",dfs(0,0));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值