# CRB and Candies

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 947    Accepted Submission(s): 442

Problem Description
CRB has N different candies. He is going to eat K candies.
He wonders how many combinations he can select.
Can you answer his question for all K(0 ≤ K ≤ N)?
CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.

Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case there is one line containing a single integer N.
1 ≤ T ≤ 300
1 ≤ N ≤ 106

Output
For each test case, output a single integer – LCM modulo 1000000007(109+7).

Sample Input
5 1 2 3 4 5

Sample Output
1 2 3 12 10

an=LCM(C(n,0),C(n,1),C(n,2),...,C(n,n))
bn=LCM(1,2,3,...,n)
an=bn+1n+1
if (n=pk)bn=pbn1elsebn=bn1

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 1000100
#define LL long long
LL mod=1000000007;
LL notprime[N],prime[N];
LL dp[N];
void init()
{
for(LL i=2; i*i<N; i++)
{
if(!notprime[i])
{
for(LL j=i; j<N; j*=i)
prime[j]=i;
for(LL j=i*i; j<N; j+=i)
notprime[j]=1;
}
}
dp[1]=1;
for(int i=2; i<=N; i++)
if(prime[i])
dp[i]=dp[i-1]*prime[i]%mod;
else if(!notprime[i]) dp[i]=dp[i-1]*i%mod;
else dp[i]=dp[i-1];
}
LL pow_mod(LL a,LL n)
{
LL ans=1;
while(n)
{
if(n&1) ans=ans*a%mod;
a=a*a%mod;
n>>=1;
}
return ans;
}
LL inv(LL n)
{
return pow_mod(n,mod-2);
}
int main()
{
int T;
LL n;
init();
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
LL ans=dp[n+1]*inv(n+1)%mod;
printf("%lld\n",ans);
}
return 0;
}

#### HDU 5407 CRB and Candies(LCM +最大素因子求逆元)

2015-08-21 14:26:36

#### 【数学-求组合数的最小公倍数】HDOJ CRB and Candies 5407

2015-12-07 21:57:24

#### hdu5407CRB and Candies (逆元+数学公式)

2016-03-01 15:00:21

#### hdu5407CRB and Candies 求逆元

2015-08-30 19:38:17

#### Hdoj.5407 CRB and Candies【数论。。。】 2015/12/05

2015-12-05 21:38:55

#### hdu-5407(多校2015)

2015-08-20 21:03:38

#### hdu 5407CRB and Candies

2015-08-24 17:11:14

#### 数论（CRB and Candies，HDU 5407）

2017-07-22 21:26:40

#### HDU 5407 CRB and Candies 数论

2017-07-23 14:47:26

#### hdu 5407 CRB and Candies（数论）

2015-08-21 22:25:14