hdu 5407 CRB and Candies(数论,LCM,快速幂取模,求逆元)

CRB and Candies

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 947    Accepted Submission(s): 442


Problem Description
CRB has N different candies. He is going to eat K candies.
He wonders how many combinations he can select.
Can you answer his question for all K(0 ≤ K ≤ N)?
CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.
 

Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case there is one line containing a single integer N.
1 ≤ T ≤ 300
1 ≤ N ≤ 106
 

Output
For each test case, output a single integer – LCM modulo 1000000007(109+7).
 

Sample Input
5 1 2 3 4 5
 

Sample Output
1 2 3 12 10
题意:求LCM(C(0,n),C(1,n)...,C(n,n))

思路:我也不知道怎么来的公式反正直接用就是了。证明过程来自 http://arxiv.org/pdf/0906.2295v2.pdf  因为是英文的能看懂就看吧

结论就是:

an=LCM(C(n,0),C(n,1),C(n,2),...,C(n,n)) 
bn=LCM(1,2,3,...,n) 
an=bn+1n+1 
if (n=pk)bn=pbn1elsebn=bn1 

所以用素数筛选求出所有n可由单个质因子累乘的数即可。然后用欧拉定理或者乘法逆元求n+1的逆元

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 1000100
#define LL long long
LL mod=1000000007;
LL notprime[N],prime[N];
LL dp[N];
void init()
{
    for(LL i=2; i*i<N; i++)
    {
        if(!notprime[i])
        {
            for(LL j=i; j<N; j*=i)
                prime[j]=i;
            for(LL j=i*i; j<N; j+=i)
                notprime[j]=1;
        }
    }
    dp[1]=1;
    for(int i=2; i<=N; i++)
        if(prime[i])
            dp[i]=dp[i-1]*prime[i]%mod;
        else if(!notprime[i]) dp[i]=dp[i-1]*i%mod;
        else dp[i]=dp[i-1];
}
LL pow_mod(LL a,LL n)
{
    LL ans=1;
    while(n)
    {
        if(n&1) ans=ans*a%mod;
        a=a*a%mod;
        n>>=1;
    }
    return ans;
}
LL inv(LL n)
{
    return pow_mod(n,mod-2);
}
int main()
{
    int T;
    LL n;
    init();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld",&n);
        LL ans=dp[n+1]*inv(n+1)%mod;
        printf("%lld\n",ans);
    }
    return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/acm_cxq/article/details/51660126
文章标签: ACM HDU 数学 数论
个人分类: 数学-数论
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭